
www.manaraa.com

DOCUMENT RESUME

ED 315 055 IR 014 169

AUTHOR Scandura, Alice B.
TITLE The INTEUIGENT RuleTutor: A Structured Approach to

Intelligent Tutoring. Final Eeport.
INSTITUTION Intelligent Micro Systems, Inc., Narberth, PA.
SPONS AGENCY Department of Education, Washington, DC.
PUB DATE 1 Feb 89
CONTRACT 400-86-0060
NOTE 85p.
PUB TYPE Information Analyses (070) -- Reports - Descriptive

(141)

EDRS PRICE MF01/PC04 Plus Postage.
DESCRIPTORS *Artificial Intelligence; Cognitive Style; *Computer

Assisted Instruction; Computer Y aged Instruction;
Computer Simulation; *Diagnostic . sts; Instructional
Systems; *Programed Tutoring

IDENTIFIERS *Generative Computer Assisted Instruction;
*Intelligent CAI Systems; Structural Learning

ABSTRACT

This final report describes a general purpose system
for developing intelligent tutors based on the Structural Learning
Theory. The report opens with a discussion of the rules and related
constructs that underlie cognitive constructs in all structural
learning theories. The remainder of the text provides: (1) an
introduction to the Structural Learning Theory as it relates to
simple intelligent computer based instruction (ICBI) systems and
authoring; (2) a description and analysis of the MicroTutor II
arithmetic tutor; (3) an overview of the Structural Learning Theory
and the kinds of intelligent tutor systems that have been developed
based on this theory; (4) a discussion of the RuleTutor prototype
itself; (5) an explanation of the PRODOC Computer software
development system, which is designed to represent content in the
form needed for use by any planned modular ICBI system; (6) sample
arithmetic rules (constructed using PRODOC) to be used in conjunction
with the intelligent RuleTutor; and (7) a review of related research
and a summary of major points. A number of Scandura FLOWforms (an
extended form of a flow chart) are interspersed throughout t.ie text,
and four additional FLOWforms illustrating simulations for addition,
subtraction, multiplication, and division are appended. (72
references) (SD)

,
Reproductions supplied by EDRS are the best that can be made

from the original document.
-t

www.manaraa.com

U.S. DEPARTMENT OF EDUCATION
Office of Educational Research and Improvement

EDUCATIONAL RESOURCES INFORMATION
CENTER (ERIC)

yThis document has been reproduced as
received from the person or organization
originating it
Minor chooses have been made to Improve
reproduction quality

Points of view or opinions stated in thisdocu
men! do not necessarily represent official
OERI position or policy.

The INTELLIGENT RuleTutor:
A Structured Approach to Intelligent Tutoring*

Alice B. Scandura, Ph. D., Principal Investigator
Intelligent Micro Systems, Inc.

1249 Greentree Lane
Narberth, PA 19072

Contract 400-86-0060
Final Report

February 1, 1989

* This project was funded in part with Federal Funds from the Department of Education
under contract numbers 400-85-1020 and 400-8f-0060, The cot ,tents of this
publication do not necessarily reflect the views or policies of the Department nor does
mention of trade names, commercial products or organizations imply endorsement by
the U.S. Government,

oC

BEST COPY AVAILABLE

www.manaraa.com

The INTELLIGENT Rule Tutor:
A Structured Approach to Intelligent Tutoring*

Alice B. Scandura, Ph. D,, Principal Investigator
Intelligent Micro Systems, Inc.

1249 Greentree Lane
Narberth, PA 19072

Contract 400-86-0060
Final Report

February 1, 1989

* This project was funded in part with Federal Funds from the Department of Education
under contract numbers 400-85-1020 and 400-86-0060. The contents of this
publication do not necessarily reflect the views or policies of the Department nor does
mention of trade names, commercial products or organizations imply endorsement by
the U.S. Government.

BEST COPY AVAILABLE

www.manaraa.com

The INTELLIGENT Rule Tutor:
A Structured Approach to Intelligent Tutoring

ABSTRACT

This report describes a general purpose system for developing intelligenttutors based
on the Structural Learning Theory. This system has two distinct but complementary
parts: The first part Is a general purpose Intelligent tutor which Is able to performboth
diagnostic testing and Instruction -- but which does not contain content specific
knowledge, ether of the problem or tasks to be generated or the cognitive procedures

(rules) to be taught. The second part consists of IMS's PRODOC software development
system. PRODOC provides an easy-to-use medium for specifying the contentto be
taught (in terms of rules). Each such rule, In turn, is interpretable by a general purpose
tutor, resulting In an operational intelligent taming system.

More specifically, we have described a general-purpose Intelligent RuleTutor which
can be used In conjunction with ANY cogntive procedural task formulated as a single

rule (1.e, as defined in the Structural Learning Theory . Scandura
1970,1977,1984 The component or atomic rules in PRODOC's rule library might
reasonably accommodate essentially any content area. Specifically, the atomic rules
In this library have been shown to provide a natural basis for formulating arbitrary rules
(corresponding to to-be-learned cognitive procedures) in arithmetic.

www.manaraa.com

THE INTELLIGENT RULETUTOR PHASE II:
A Structured Approach to Intelligent Tutoring

Joseph M. Scandura and Alice B. Scandura
University of Pennsylvania Intelligent Micro Systems, Inc.

INTRODUCTION

Most contemporary computer-based instruction (CBI) authoring systems are of the
"fixed content" variety; that is. they require users to input explicitly the instruction and
questions to be presented as well as possible answers and feedback that migh, be
given. In addition, the CBI author must specify for each intended application the exact
conditions governing the selection and sequencing of information used in diagnosis
and instruction.

Unlike instructional systems created with "fixed content" authoring systems, generative
authoring systems create instructional systems in which content is generated
dynamically as testing and/or instruction proceeds. Generative authoring systems
which are Intelligent also determine automatically what test items and/or instructions
are to be given and when (they are to be given).

At the present time the latter problem is being attacked from two different perspectives.
Perhaps the predominant one is based largely on programming techniques associated
with "artificial intelligence". The other is more directly associated with cognitive
instructional systems.

The former approach is typically characterized by use of the programming languages
LISP and, to a growing but lessor extent, Prolog. These languages are especially good
for rapid prototyping. More uniquely, their very nature lends them to logical deduction
and open ended programming tasks -- that is, tasks where it is infeasible for the
programmer to fully anticipate all possibilities during program construction.
Unanticipated possibilities may be inferred from relatively small sets of basic
assumptions. In this context "giving reasons" for an assertion is equivalent to ming
able to derive the assertion (from mutually agreed assumptions). Consequently, some
working in this tradition actually equate the word "intelligent" with the ability to give
reasons.

Educational applications have tended to parallel these characteristics. So called
"microworlds", for example, generally provide an open ended environment within which
the learner may explore the possibilities inherent in some domain of knowledge. The

2

5

www.manaraa.com

programming language Logo (which is based on LISP) is a well known example.
Microworlds may be viewed as generative systems in which the learner has full control
over the goals to be achieved and how to achieve them. Intelligent tutoring systems in
this tradition provide "advice" but tend to stress the idiosyncratic. In large part this is
because "learning" within the Al tradition was often equated with fixing "bugs" (rather
than the acquisition of new knowledge). More generally, it is because languages like
LISP presuppose a certain ordering on the world, one which has little directly to do with
cognition or instruction.

The goals these investigators have set for themselves have a certain attractiveness.
One can hardly question the desirability of generating problems and solutions
dynamically as needed, allowing learners to investigate subjects from alternative
perspectives, dealing with individual idiosyncrasies and reasoning logically on the
basis of available knowledge. Nonetheless, judging from the paucity of concrete
results after so many years of generous funding, one can seriously question whether
traditional Al provides the best or even a good way of producing practical (much less
commercially viable) products.

There are two basic issues here. One has to do with the ICBI systems themselves (or
"intelligent tutors" as they are often called); the other has to do with development
strategy. Granting that ICBI systems ideally should include (but not be limited to) the
above characteristics, we believe there are more efficient means of achieving these
goals. Clearly, just developing large numbers and varieties of ICBI systems will not do
it. Questions pertaining to quality aside, cost alone makes development prohibitive
without generous federal support. While experience can reduce such costs to a
degree, order of magnitude improvements are needed if we are to produce (and
properly maintain) the needed systems. Equally important, it is essential that
computer-literate content and pedagogical experts be able to participate directly in
such development.

In this report we describe a microcomputer-based Rule Tutor authoring system which
will allow instructional designers and content experts who are not programmers to
create ICBI systems in their areas of expertise. Toward this end a highly structured,
cumulative approach to ICBI development is described. Central to this approach is a
sharp conceptual distinction between content and the tutorial aspects of ICBI systems.
Making such a distinction is increasingly recognized as crucial in making ICBI
development more efficient.

To date, however, no one has succeeded in developing such an ICBI system, much
less an easy-to-use authoring system for developing such systems. Some have
publicly expressed the opinion that it cannot be done. Why do we feel confident that it
CAN be done? As it turns out there are conceptual, pragmatic, technological and
methodological reasons: (a) a well researched theory (Structural Learning Theory) in
which such distinctions are central, (b) the commercial availability of an ICBI type
system (the Micro Tutor II intelligent arithmetic tutor) which approaches (but does not

3

www.manaraa.com

fully achieve) complete modularity, (c) a carefully phased and cummulative approach
to system development (as opposed to the more idiosyncratic, less cognitively and/or
instructionally based approaches characteristic of AI-based development) and (d) the
current availability of a software development system, called PRODOC, which
represents content in precisely the form needed for use by any of the planned modular
ICBI tutorial systems.

The type of system Intelligent Micro Systems, Inc. (IMS) has developed can be
represented schematically as shown in the figure below. ICBI systems are dep:ted as
having two parts: an intelligent RuleTutor system and a set of rules representing the
content to be taught. Although not represented explicitly, one can envision intelligent
RuleTutor systems ordered according to complexity of the content (e.g, the numbers
and types of rules) they can handle. In this report, we describe an intelligent RuleTutor
prototype which is designed to provide optimal diagnosis and remediation with respect
to cognitive procedural tasks (i.e., single rules). Incidentally, we have shown how this
RuleTutor might be extended at some future time to accommodate any type of content.

The solid line indicates that PRODOC was completed before the project was started.
Indeed, PRODOC was used in the development of the intelligent RuleTutor prototype
(dashed line). More important, PRODOC, in turn, can be used by subject matter and
pedagogical experts (e.g., instructional designers) to represent the rules to be learned.
In contrast 'o traditional Al-based approaches to ICBI development, the IMS approach
is highly structured and based on the Structural Learning Theory. As noted by
Scandura (e.g., 1971, 1973), it provides a systematically structured approach to the
unbounded and/or unanticipated.

Given its centrality in both PRODOC and the planned intelligent RuleTutors, we begin
our report with discussion of the rule and related constructs. After this come the
following sections: (a) Introduction to the Structural Learning Theory (as it pertains to
simple ICBI systems and authoring); (b) The MicroTutor II arithmetic tutor, a description
and analysis; (c) An overview of the Structural Learning Theory and the kinds of
intelligent tutor systems that might be developed based on such theory; (d) A
description of the RuleTutor prototype itself; (e) PRODOC, with emphasis on those
aspects to be used in !CBI authoring to create rules for use by the intelligent RuleTutor;
(f) Arithmetic rules (constructed using PRODOC) to be used in conjunction with the
intelligent RuleTutor. Following the above is a section which deals with relationships
with other research, followed by a summary of major points.

RULES AND RELATED CONSTRUCTS

The problem and rule constructs serve as the key underlying cognitive constructs in all
structural learning theories (Scandura, 1977, 1981a). However, it became increasingly
apparent that the precise syntax chosen to represent rules and associated constructs
would have a direct(effect on the generality and efficiency of any ICBI systems based

4

www.manaraa.com

IMS Approach to
Intelligent CBI Development:

Structural Learning
(science of cognitive,

instructional and intelligent
systems engineering)

expertise

(Subject matter expertise

C

Programming in
Pascal

PRODOC
(with atomic
rule library)

Pedagogical expertise y

Rules
(Generative)

Intelligent
Rule Tutor
system

(with atomic
rule library)

ICBI System

Figure 1. --- Schematic depicting IMS approach to intelligent ICBI (tutor) development
and high level structure of ICBI system.

8

www.manaraa.com

thereon. Consequently, the considerations which led to specifying the form of the
rule-oriented language will be discussed first.

Individual rules are characterized es triples, consisting of a domain, a range and a
restricted type of procedure. Problems as well as the domains and ranges of rules, in
turn, are defined in terms of structures.

In structural learning theories, structures have been defined as n-tuples, consisting of
finite (ordered) sets of psychologically meaningful (atomic or indivisible) elements,
relations defined on the elements and higher-order relations defined on the relations.

Problems, then, have been defined simply as structures in which those elements
corresponding to the problem givens are distinguished (i.e., labeled as givens) and
those corresponding to the problem solution are replaced by goal variables. Similarly,
the domains/ranges of rules are problem structures in which the givens also are
replaced by (different) variables.

The procedures of rules are restricted in the sense that they must be structured. That is,
each element in successive decompositions of rule procedures must consist of one of
three types of elements: a sequence of simple operations, an iteration (or loop), or a
decision (or branch). Rule procedures are further restricted in the sense that recursive
operations are explicitly disallowed. (Although higher-order rules do not play a role in
the proposed research, the role of recursion is taken over in structural learning theories
by a content-independent control mechanism together with higher-order rules which
operate on given rules (e.g., see Scandura, 1981a, p. 141.)

These definitions have served well as a basis for characterizing rules, structures, et al.,
for a wide variety of purposes, ranging from the design of basic research concerned
with cognitive processes (e.g., Scandura, 1977) to computer implementation of the
Micro Tutor II Arithmetic tutor (e.g., Scandura, 1981b, Scandura et al, 1986).

Unlike the Micro Tutor II Arithmetic tutor, however, the proposed !CBI systems would
accommodate arbitrary (but previously defined) rules characterizing what is to be
learned. More specifically, we have implemented an intelligent Rule Tutor, which not
only is vastly improved and more general, but which also is extensible -- extensible in
the sense that additional aspects of the Structural Learning Theory may be added later.
In future extensions of the planned implementation, for example, it would be highly
desirable to: (a) accommodate arbitrarily complex content (e.g.,
Scandura,1971,1973,1977) and (b) automate the process of structural analysis (e.g.,
Scandura, 1982, 1984a, 1984b) by which the to-be-learned rules may be identified.

In this context, certain limitations of the above rulEi characterization became apparent.
Specifically, structures had been defined in a way which could make future
implementation of structural analysis more complicated than originally expected.

5

www.manaraa.com

The original approach to generating the "structure" construct was from the BOTTOM-UP
(e.g., Scandura, 1977). That is, basic atomic elements were introduced and relations
were defined on them and previously defined relations. However, the process of
structural analysis is essentially a TOP-DOWN process -- a successive refinement of
elements (e.g., relations, atomic rules).

Given this observation, the solution to the problem became obvious; Reverse the form
of the representation used for structures. Rather than thinking of structures as being
built up from (sets of) atomic elements, they were recursively defined (from the top
down) in terms of ordered sets whose elements themselves might be ordered sets.
Since the basic elements at any level might be redefined (as an ordered set), this
approach allowed for arbitrary levels of refinement as required in structural analysis.
Note that an ordered set whose elements can be ordered sets is equivalent to a partial
ordering. (NOTE: A partial ordering is an inverted tree-like structure in which elements
may belong to more than one set. Since the following examples are all simple trees,
the more familiar term "tree" is used in following discussion.)

Although the BOTTOM-UP and TOP-DOWN representations of structures are formally
equivalent, the latter provides a highly efficient basis for computer implementation --
something desirable in all programming and often essential in working with
microcomputers.

Similarly, a rule procedure generated by a top-down, successive refinement process
can naturally be represented in terms of an ordered set whose elements may be
ordered sets -- or equivalently as a tree (partial ordering). In structural learning
theories, rule procedures (at all levels of refinement) are necessarily structured.
Hence, a tree representation of a rule procedure would have three kinds of
non-terminal nodes: (a) a "sequence" node would normally have two or more "children"
nodes (i.e., immediate descendants in the tree), which would be the components of the
sequence into which the "parent" node had been refined; (b) a "selection" node would
have two or more children nodes, the first one being a (terminal) condition node and
the others being the alternatives; and (c) an iteration or "loop" would have two nodes, a
condition node and the body of the loop. (Note: Such a tree representation of a
procedure might be executed by a recursive interpreter and/or used in generating
compilable source code, a fact used directly in IMS's PRODOC software development
system.)

To accommodate the top-down nature of the proposed RuleTutor Authoring system,
therefore, the ORDERED SET was chosen as our basic building block. This choice has
the added advantage of uniformity: procedures, structures, problems, domains, ranges,
et al., can be represented as ordered sets.

Although of only incidental interest as regards the current research (which deals
exclusively with cognitive procedures -- individual rules), the uniform use of ordered
sets also will facilitate future implementations involving higher-order rules. Thus, since

6

10

www.manaraa.com

all components (domain, range and procedure) of rules must be represented as
ordered sets, rules can easily be included as components of other (higher-order) rules
(e.g., Scandura, 1971, 1974).

Angle bracket notation may be used to express ordered sets and trees. For example,
<x,y,z> is an ordered set with three elements; x is the first, y is the second, and z is the
third. Similarly, «w,x,y,z> is an ordered set of three elements, the first of which is
itself an ordered set of two elements. Alternatively, this set can be viewed as a tree,
where the symbol "*" is used for non-terminal nodes:

Relatively standard terminology is used to refer to relationships in trees. For example,
the nodes corresponding to the elements of a set will be referred to as the "children" of
the node corresponding to that set (which will be referred to as their "parent"). The
highest node in the tree is called the "root"; it has no parent node. By analogy with
biological relationships, the immediate descendants of a node are its children,
grandchildren, etc.; ancestors may be parents, grandparents, etc. The root node plays
a special role in a tree: every other node in the tree is its descendant.

Where one wants to store textual information in a node of the tree, w'nether or not it is a
terminal node, the above notation may be extended as follows: textual information
(e.g., "v") written just prior to specification of an ordered set (without an intervening
comma) is associated with the node (e.g., <w,x>) whose children constitute the ordered
set. Thus, <v <w,x >,y,z> would be drawn as follows:

7

11

www.manaraa.com

To see how trees can be used to represent previously discussed constructs, consider
the long division problem, 4278 divided by 316, for which there are two components in
the answer, the (integer) quotient and the remainder. It would have the following tree
representation:

PROBLEM

GIVENS GOALS

DIVISOR: DIVIDEND: QUOTIENT REMAINDER
316 4278

//
3 1 6 4 2 7 8 Q1 Q0 R2 R1 RO

As mentioned earlier, domains and ranges of rules are structures in which some of the
specific values or relations are replaced with variables (e.g., 8 by D1). Thus, we can
easily derive a domain representation from the GIVENS portion of the above tree and a
range representation from the GOALS portion of the tree.

In these trees, the terminal nodes are variables which designate elements from the set
of decimal digits (with appropriate place values). The actual domain and range
representations for long division would be somewhat complicated by the fact that the
number of digits in the various elements can vary. Higher level variation of this type is
accommodated naturally by allowing variable numbers of elements (terminal nodes) in
the higher level (e.g., divisor) nodes.

We represent rule procedures, in terms of Scandura FLOWforms (an improved and
extended form of Nassi-Shneiderman flow charts). In FLOWforms, a sequence of
operations is represented by a vertical sequence of adjacent rectangles (e.g., the
sequence B, C, D in the following diagram). The alternatives in a selection construct
(e.g., A and (B, C, D)) and the body of a WHILE or UNTIL loop (e.g., If X, then A, else (B,
C, D)) are rectangles Inset within the rectangle representing the structure of which they
are a part,

8

12

www.manaraa.com

REPEAT

UNTIL Y

IF X

THEN I A

ELSE I B

C

The trce representation of this procedure is as follows:

REPEAT/
SELECTION

X A SEQUENCE

B C D

In the above picture, X and Y are conditions and the operations A, B, C arid D are
atomic rules. The equivalent ordered set representation of this procedure is as follows:

9

13

www.manaraa.com

REPEAT < SELECTION < X,
A,

SEQUENCE < B,
C,
D

>,

Given the central role of problems and rules in both IMS's PRODOC developmental
system and the proposed RuleTutor, computer implementation of trees (partial
orderings) or ordered sets in the latter (RuleTutor) will directly parallel that used in
PRODOC.

INTRODUCTION TO STRUCTURAL LEARNING THEORY

In the Structural Learning Theory (STL) a sharp distinction is made between general
diagnostic testing and instructional functions, on the one hand, and the content being
taught on the other (e.g., Scandura, 1971, 1977, 1980, 1981a). As detailed by
Scandura (e.g., 1970, 1980, 1981a) all content in this theory is represented in terms of
rules. In turn, all diagnosis (testing) and instruction is based on such rules -- rules
which are identified via prior structural analysis of some body of subject matter content
(Scandura, 1977, 1984a, 1984b).

Once an analysis has been completed, designing an effective instructional strategy
"iws directly from the theory (e.g., see Scandura 1981b, Scandura, Stone &

Scandura, 1986). Specifically, once analysis has been completed, one knows: (a)
what kinds of things the student is to be able to do after learning and (b) what the
student must learn in order to be able to do that.

Given this information, the first thing one must do in designing an effective instructional
strategy is to determine what each student already knows, specifically, which parts of
what the student knows are relevant to what one wants the student to learn. This is
accomplished by a highly efficient process of diagnostic testing, which makes use of
the rule-based representation of content.

A basic principle in structural learning theories is that rules, including higher order
rules, must be represented in terms of atomic components (i.e., atomic operations and
conditions). These components are assumed to be either totally available or totally
unavailable to evely learner in the target population.

10

14

www.manaraa.com

In general, different sequences of components of a rule procedure will be required in
order to solve different problems in the domain of the rule, and each such sequence of
procedure components is called a path. For example, consider the rule procedure
represented by the following FLOWform:

REPEAT

UNTIL Y

IF X

THEN

ELSE

In any execution (application) of this FLOWform, condition X is tested first. If X is true,
operation A is carried out; otherwise B is executed. Next, condition Y is tested. If true,
the process terminates. If Y is false, the above process (the body of the "loop") is
repeated until Y becomes true.

Now, some problems can be solved using only the operation (rule component) labeled
A (where X is true during all repetitions of the loop body); some can be solved using
only B; and some require both A and B. Thus, there are three distinct paths. The paths
of a rule procedure partition the associated problem domain into a set of equivalence
classes; each class consists of problems whose solutions utilize the same path. In
general, given atomicity assumptions, a student will at a given point in time be able to
solve either ALL problems in an equivalent class or none of them (e.g., Scandura,
1977).

Consequently, by testing on as few as one problem from each equivalence class, it is
possible to identify precisely and unambiguously which parts of a rule any given
student knows and which parts he or she does not know. Testing efficiency can be
further enhanced because the paths of a rule are hierarchically related. Higher-level
paths are superordinate to lower-level paths in the sense that a higher level path
includes all procedure components in its lower-level paths (identically sequenced), as
well as some additional ones. Such hierarchies provide a theoretically derived and
empirically verified (e.g., Durnin & Scandura, 1973) partial ordering of selected test
items, according to difficulty. For the rule procedure illustrated above, the hierarchy is

11

15

www.manaraa.com

A

This type of difficulty hierarchy can be utilized to provide unusually efficient
assessment. If a student fails a problem in a given equivalence class, then the student
can be presumed unable to solve problems not only in that equivalence class but also
in all other equivalence classes for which the given one is a prerequisite. Similarly, if a
student solves a problem in a given equivalence class, he can be presumed able to
solve problems not only in the tested equivalence class but also in all classes
prerequisite to it. Thus, for example, success (or failure) on one or more problems from
a class near the "middle" of a hierarchy generally will allow a wide variety of other
equivalence classes to be marked as known or not-yet-known (as opposed to
undetermined).

In general, the diagnostic testing continues until every class is marked as known or
not-yet-known by the learner. Ni this point, the rule components which the student does
not know have been identified. Instruction on problems whose solution includes those
unknown portions of the rule can then be prescribed. Structural Learning Theory is
neutral on how this information is actually presented (e.g., by exposition or discovery).
The important consideration is that the information is in fact learned. From a structural
learning perspective: deciding on an appropriate method of presentation depends on
secondary (and often higher-order) objectives that the instructional designer may or
may not have in mind.

The above description implicitly assumes that there is only one cognitive procedural
task to be learned. Simple structural learning theories of this type provide a sufficient
basis for the ICBI systems currently under development. They do not, however allow for
sets of rules, possibly including higher-order rules. In structural learning theories such
phenomena as alternative perspectives, erroneous (or "buggy") rules and logical
inference are accommodated In terms of rule sets. Related issues are mentioned
below in the context of future extensions of the intelligent Rule Tutor currently under
development. For further discussion of these and related issues, see Scandura (e.g.,
1977, 1980, 1985).

MICROTUTOR II ARITHMETIC TUTOR

Between 1980 and 1982, Intelligent Micro Systems, Inc., implemented an intelligent
diagnostic and Instructional system, called the Micro Tutor II Arithmetic tutor, on the
Apple II computer (e.g., see Scandura, Stone & Scandura, 1986). This system has
been available commercially to schools since 1982 with the latest version released in

12

16

www.manaraa.com

1984. The Micro Tutor II Arithmetic tutor is based generally on the Structural Learning
Theory and, consequently, incorporates a considerable amount of intelligence
concerning both diagnostic testing and Instruction. First, diagnostic testing is
completed in a conditional and highly efficient manner. Then, instruction is provided on
those paths of the rule which the student has not yet mastered.

More specifically, the Apple-based Arithmetic tutor can determine in a highly efficient
manner exactly what a learner does and does not know about the task in question. It
also infers what is needed to overcome inadequacies and presents that information to
the learner in an optimal sequence. As currently implemented, the Arithmetic tutor
deals not only with procedural skills per se, but with underlying meaning,
"metacognition" (or verbal awareness of what one knows) and short-cuts commonly
achieved by experts.

By itself, however, the Arithmetic tutor is useless. Despite its generalized capabilities, it
needs content for its completion. This content takes the form of software for generating
problems (tasks) and for solving whole number arithmetic problems. The Arithmetic
tutor then utilizes these capabilities in deciding which problems to present during
testing and which instruction to provide during training.

Let us consider in more detail how the Micro Tutor II Arithmetic tutor functions. Given
the content-specific information, the diagnostic testing portion of the system efficiently
determines a student's entering level, as described above. More specifically, it stores a
"checklist" for the current student (in the student records file) of the known and
not-yet-known paths. This checklist is read and updated by the instructional portion of
the system as it teaches the student in turn each of the not-yet-known paths.

The instruction on each path includes a number of instructional levels:

(1) teaching the meaning of the process,
(2) teaching the relationship between this meaning and the process

itself,
(3) teaching the process itself, providing help where necessary,
(4) helping the student to verbalize the cognitive processes learned by

having the student name the processes used or observed, and
(5) helping the student to automate the process (once the rule has

been learned), thereby increasing his degree of skill.

Within each of the above instructional levels, the system also can vary the difficulty of
the material and can adapt to the student by increasing problem difficulty (or type) at a
rate depending on the student's prior learning efficiency. For students who are
currently learning very efficiently, the difficulty level will increase relatively rapidly.
Conversely, difficulty level will increase relatively slowly for students who are currently
not learning as efficiently as they might. Furthermore, learners may skip some of the
instructional levels mentioned above if warranted by their learning efficiency on

13

17

www.manaraa.com

previous paths in the domain.

The instructional portion if 'the Arithmetic tutor stores detailed information about a
siLident's performance in ti e student records disk file. This information can be
accessed via the management portion of the system, and the parameters (e.g.,)
representing, the rate at which problem difficulty is increased for a given student or the
paths on which that student should be given instruction can be explicitly altered by an
instructor.

In spite of these positive features, the MicroTutor II Arithmetic tutor has a number of
important limitations. For one thing, the Arithmetic tutor was implemented in Applesoft
(a version of BASIC developed for the Apple II computer) and 6502 assenit !or.
Consequently, it is not easily transportable. Moreover, use of the BASIC language
made it difficult to achieve the modularity we strived for.

For another thing, implementation in many cases did not reflect the underlying theory
as accurately as possible. For example, meaning, metacognition and automation were
treated in an ad hoc fashion (c.f. Scandura, 1973, 1977 & Scandura et al, 1985).
Whereas accurate implementation called for introduction of higher-order rules (rules
which operate on rules), this was not even attempted for technical reasons (e.g., the
limited capacity of the Apple II computer).

Among the major conceptual limitations of the MicroTutor II.Arithmetic tutor are the
following: First, rule diagnosis and rule instruction in the current RuleTutor are totally
independent activities. Thus, all diagnostic testing is completed (albeit in a sequential
and highly efficient manner) before any instruction is provided. In fact, however, testing
and teaching are highly interrelated both in practice and in principle. Thus, partial
information from testing may provide a sufficient basis for (some) instruction.
Conversely, instruction on a portion of a rule may influence test performance on other
items and, hence, reduce the amount of instruction that otherwise might be prescribed.

Second, design limitations of the Arithmetic tutor fundamentally restricted instruction to
individual rules (i.e., cognitive procedures). Consequently, the design used could not
be extended to deal with sets of lower- and higher-order rules, even in principle.

Third, the basic design of the system reflected the Structural Learning Theory in only
general terms. Consequently, many features of the Arithmetic tutor were fortuitous and
opportunistic. In effect, the ability to deal with such things as rule meaning and verbal
awareness was bought at the price of significant loss of extensibility.

Fourth, even though modularity and structured programming were at the forefront of the
MicroTutor II development effort, the use of BASIC (because of its broad availability on
microcomputers) and memory limitations of the Apple II computer resulted in
unavoidable compromises along these lines. Thus, for example, it was not always
possible to maintain modularity between rule content, on the one hand, and the

14

www.manaraa.com

diagnostic and remedial components, on the other, Adding new content, even in whole
number arithmetic, typically required (sometimes subtle and hard to identify) changes
in basic diagnostic and instructional aspects of the system.

In summary, design limitations imposed restrictions on efficiency as well as on both
immediate generality (limiting the variety of different content rules that could be
accommodated) and future generalizability to more complex content (involving sets of
rules including higher-order rules).

STRUCTURAL LEARNING AND INTELLIGENT TUTORING SYSTEMS:
DESIGNS AND METHODOLOGY

In this section we describe an approach to ICBI development which not only improves
on the Micro Tutor II design, but is more general, more transportable, and in future work
more extensible. Specifically:

(1) The design specifications not only optimize testing and instruction
independently with respect to indivk rules but optimize testing and instruction
collectively.

(2) These specifications can naturally be extended in future work to encompass
arbitrary curricular content involving any number of higher- as well as lower-order
rules. This includes the possibility of alternative perspectives, along with "error" (i.e.,
idiosyncratic or "buggy") rules. (However, see the section on related research.)

(3) The designs ensure that the current implementation will accurately and, to the
extent practicable, fully reflect the underlying theory. In the arithmetic tutor for example,
basic constructs such as that of "rule" and "problem", were formulated in terms
designed more to facilitate implementation in BASIC than to reflect underlying theory.
Even where a concept or construct is not proposed for current implementation, every
attempt was made to allow for its addition at a later time.

(4) All specifications were made as modular as humanly possible. Every effort
was made to define all major ideas rigorously in a form independent of any computer
language. Adherence to structured techniques, of course, necessarily biased our
designs toward computer languages such as Pascal, Modula 2 and Ada, which readily
lend themselves to structured programming. This difference, as much as any other,
differentiates our work from traditional Al-based systems

In short, the new design is a major advance over the one used with the MicroTutor II
system. Among other things, this should help ensure compatibility with the Structural
Learning Theory (SLT) -- and, specifically, generalizability to arbitrary cognitive
procedures (rules) and future extensibility to more general curricular content.

www.manaraa.com

While space limitations make it impossible to present here most aesign details, the
discussion which follows will hopefully provide a good sense of the basic approach. To
set the context, let us begin by considering the process of instruction more generally.

All structural learning theories (SLT) (e.g., Scandura, 1971, 1977, 1980) include two
major comporants: (1) a problem domain or domain of discourse (e.g., what is to be
learned), and a set of (cognitive) rules derived by the process of Structural Analysis,
and (2) the individuals (e.g., a teacher and/or learner) participating in the discourse. At
this very high level, SLT's are analogous to Pask's (1975) Conversation Theory. In
SLT's, however, individual knowledge is represented quite differently (e.g., rules are
strictly modular) and explicit attention is given to basic psychological characteristics of
the learner.

In their simplest form, SLT's involve one individual interacting with its environment, via
(relative to) some proscribed domain of discourse (characterized in terms of problems
in the problem domain and the rules, including higher-order rules, associated with
them). The goal-directed individual is viewed as attempting to solve "problems" that
are somehow presented to him or to achieve desired results. The individual's
responses are generated via its available rules of knowledge and the cognitive
universals governing their use. (New rules generated via higher-order rules are said to
be "learned").

The SLT also addresses the basic question of what an individual knows (that is
relevant) to begin with. The individual's knowledge is operationally defined in terms of
the rules characterizing the problem domain. As described briefly above, and more
fully by Scandura (e.g., 1977), the individual's responses to specific problems are used
to indicate which parts of which prototypic rules associated with the problem domain
that the individual knows.

A more general form, represents a dialogue between two (or more) individuals (e.g., a
teacher and a learner). it should be noted that in general neither individual has perfect
knowledge of the domain nor perfect diagnostic and/or teaching knowledge. If one of
the participants did, "perfect" communication would theoretically be possible (but only
with respect to the domain of discourse). In any case, there is no a priori guarantee that
an individual participant can either accurately assess what the other participant knows
(or can do) or influence that participant in theoretically optimal ways. In general, these
inferencing and influencing capabilities will be partial.

The teaching-learning process involves a variation of the above in which one of the
participants is an "idealized" teacher and the other, a learner. This relationship is
represented schematically in Figure 2.

Various aspects of this characterization of the teaching-learning process have been
discussed in detail in previous publications. The process of structural analysis (SA), for
example, has evolved over a period of many years (e.g., Scandura, Durnin & Wulfeck,

16

www.manaraa.com

Overview of Structural Learning Theory

Structural Analysis

PROBLEM DOMAIN: (including those problems which
learner is to be able to solve after learning and

rules to be acquired to make this possible).

A
V.M1111111Ms..\11L11,

IDEALIZED TEACHER:
a learner with full

knowledge of
Problem Domain plus

SLT - based knowledge
of how to diagnose

student problem areas
and to provide remedial

instruction.

A

LEARNER:
universals (e.g.

control mechanism)
plus rules representing

current state of
knowledge.

Figure 2. --- Overview of Structural Learning Theory

21

www.manaraa.com

1974; Scandura, 1977; 1984a,b). Today, SA has reached the point in its evolution
where critical aspects of the process might reasonably be automated. A high level
summary of this process is shown in the procedure FLOWform of Figure 3.

(Procedure FLOWforms are a convenient means of representing the procedural
component of rules in a rectangular area, such as a video screen.) In this FLOWform,
the name used by the Disk Operating System (DOS) to access the FLOWform is printed
on the top line in brackets with the full name "Structural_Analysis" following the colon.
Immediately below is a top-level, symbolic representation of Structural Analysis.

rule_derivation_hierarchy := STRUCTURAL ANALYSIS (problem_domain)

where "problem_domain" is input into the operation "STRUCTURAL ANALYSIS."
When carried out, this operation generates (i.e., results in) a rule_derivation_hierarchy
(and indirectly those rules which can be derived directly or indirectly from them, e.g.,
Scandura, 1971, 1973b, 1977). Next, in braces are more complete descriptions of the
new terms in this symbolic representation. This same pattern is used in each of the
following FLOWforms.

More details on SA in its current state are given in Scandura (1984a). In the present
context, it must be emphasized that there is NO limit on the number of different
perspectives from which a problem domain may be analyzed (e.g., see Durnin and
Scandura, 1973). We also note that, as with all potential knowledge, logical
inferencing capabilities are represented in terms of rules (e.g., Scandura 1973, 1977a).
(Where the inferencing involves other rules, the inference rules may be of a higher
order.) "Bugs" similarly are represented as (error) rules or perturbations on a given
rule. See the section on related research for further discussion.

(Note: Higher "level" rules are not to be confused with higher "order" rules. The former
are more encompassing rules that are relatively higher in a rule hierarchy. The latter
are rules which operate on other, relatively lower order rules. See Scandura (1973b)
for further discussion of this point.)

Although SA has a major place in our long range plans, in the present context the rules
to be learned must be identified and represented directly by the instructional designer
(or subject matter expert). However, as we shall see in a later section, availability of the
PRODOC development system makes this task much less onerous than it otherwise
might be.

The current !CBI research is concerned primarily with those portions of the
teaching-learning process pertaining to the Idealized Teacher and learner. Notice, in
particular, that in this model the idealized teacher knows (i.e., has direct access to) ail
of the prototype rules (representing what is to be learned), and can recognize and/or
generate arbitrary problems in the Problem Domain. In addition, this Idealized teacher
assumably has built into it all of the theoretically optimal machinery for diagnosing

17

42

www.manaraa.com

1A.RUL3 Structural_Analys is Copyright 1987 Scandura

Ile_derivation_hierarchy := STRUCTURAL_ANALYSIS (problem_domain)
eration: STRUCTURAL ANALYSIS = process described in Scandura, J. M.

Structural (Cognitive Task) Analysis: II. Systematization ofthe Method. Journal of Structural Learning, 1984,. 8, 1-28.Input: problem domain = generalized specifications for class of problems
cofresponding to capabilities student is to have afterlearning.

lutput: rule derivation hierarchy = hierarchy of rules obtained as a result
of structural analysis, performed iteratively, with base rules at
bottom and those corresponding to sample problems/curriculumgoals at the top; has two parts: hierarchy of rules by name and
individual rules.)

prototypic_problems := SELECT_PROBLEMS (problem_domain)

(SELECT PROBLEMS = selects sample of problems characteristic of
problem domain; in curriculum planning these problems may
correspond to specific curriculum goals.

prototypic_problems = in education, set of problems illustrative
of curriculum goals.)

. rule derivation hierarchy := RULE HIERARCHY ANALYSIS

. (profotypic_problems)

REPEAT
. Derivation set := NEXT LEVEL_OF_ANALYSIS (rule hierarchy

.

rule derivation hierarchy Cat next level) :=
RULE ANALYSIS (prototypic_problems, rule_derivation_hierarchy)

(rule_derivation_hierarchy = hierarchy of rules where set of
rules at any level is sufficient to
generate both solutions to
prototypic problems and underlying
rules at higher levels.)

derivation_set := GET_DERIVATION_SET (rule_derivation_hierarchy)

(derivation_set = set of terminal rules at base of
rule_derivation_hierarchy.)

UNTIL SUFFICIENTLY_POWERFUL (problem_domain, derivation_set)

(SUFFICIENTLY POWERFUL = derivation set provides a sufficient basis
for solving all problems in problem domain
(either directly or indirectly in terms of
rules derivable from the underlying rules) or
they are otherwise judged sufficiently
powerful by curriculum designer.)

Figure 3. --- Structural Analysis,

www.manaraa.com

learner difficulties and for providing optimally efficient remediation. This may or may
not include idealized inferencing capabilities of the sort used in expert systems.

The learner, in turn, is characterized in terms of some subset of the idealized
knowledge plus universals. See the FLOWform for more details. Far more extensive
discussion of the learner model may be found in a variety of publications (e.g.,
Scandura, 1971, 1973, 1977a (esp. Chapter 2), 1980).

This idealized teacher is characterized at a very high level in the FLOWfr,:m below.
Notice that no constraints are placed on the content to be taught; hence the term
"Curriculum-Tutor". Provision is made in the FLOWform for arbitrary problem domains,
involving sets of higher- and lower-order rules, albeit at a rather high level. If fully
implemented, such a system might be used to provide instruction on learning
strategies, including logical inference (higher-order rules), lower-order rules (cognitive
procedural tasks) and interactions among them. It also provides for alternative
perspectives (including error rules) and perturbations on prototypes.

The Curriculum Tutor takes a formal characterization of the learner as input and
provides optimal diagnosis and instruction needed to produce learner mastery on all
rules in the rule derivation hierarchy. The learner, formally speaking, is characterized
by a universal control mechanism, a processing capacity and a set of rules (possibly
including higher-order rules) representing that portion of available knowledge that is
relevant to the problem domain (i. e., curriculum).

Refinement of the CURRICULUM TUTOR into components involves a REPEAT...UNTIL
loop: a GENERALIZED_RULETUTOR, which wou'd work with arbitrary
rulederivation_hierarchies, constitutes the body of the loop and MATCH constitutes
the terminating condition.

In our research, the body of the main loop has undergone further refinement but the
details are not important here. The basic jist of this design (refinement) is to determine
tasks which maximally "stretch", but still lie within, the learner's capabilities (at each
point of time). Normally, this will require the learner to mobilize a variety of higher- and
lower-order rules, and may involve attacking the problem from any of the perspectives
considered during structural analysis of the content.

After testing on each such task, the learner's status is updated. This essentially
involves keeping current the list of known and unknown rules. The basic process (loop
body) is repeated whenever the learner is successful (until the learner's status matches
the rule-derivation hierarchy). Before looping on failure, the Intelligent
Curriculum-Tutor determines an unmastered rule nearest the bottom of the hierarchy
and provides Instruction on that rule.

It is relatively easy to understand the individual components of the refined design
especially if one is familiar with the underlying structural learning theory.

18

24

www.manaraa.com

CURRTUTR.RUL]:curriculum_tutor Copyright 1987 Scandura
learner (with all rules in rule derivation hierarchy mastered) :=

CURRICULUM_TUTOR (ruln_de-rivation_hierarchy, learner)
CURRICULUM TUTOR = provides optimal diagnosis and instruction needed to

produce learner mastery on all rules in rule hierarchy.llearner = characterized by an universal control mechanism and processsing
capacity, and a rule set (list of mastered rules in hierarchy,
including portions thereof, may be sufficient but, for urposesof efficiency, complete characterization of rule derivation
hierarcl, path hierarchy or problem types hierarchy and path
gawp? 3 1017 all filleta in rula_darivation_hierarchy might be

REPEAT
. learner (with all paths of teachable target rule mastered) :=

GENERALIZED_RULE_TUTOR (rule_derivationhierarchy, learner) .
.

.

(GENERALIZED_RULE_TUTOR = determines initial target rule, tests .target_rule,
and .

. prerequisite) rules, reassigns .
. target rule if necessary, and provides .
. instruction on teachable

.

. target_rules.)

target rule := GET MAXIMAL_TARGET_RULE (rule dertvation_hierarchy,
learffer)

(GET_MAXIMAL_ TARGET RULE = determines rules in
rule derivation_ hierarchy
requiring maximal use of learner's

tavailable
rules and processing apacity,

hen gives learner option ot electing
oneone of these rules (where higher-order
selection rules are involved, there will
only be one target_rule at each stage)
or, if not, chooses the first of these
rules.

target_rule = rule in hierarchy to serve as target for diagnosis.)

proposed_solution := RULE_TEST (target_rule, learner)

(RULE_TEST = identify and administer problem.)

learner (with status updated) := EVALUATE SOLUTION UPDATE STATUS
(proposed soutron,
target rUle, learner,
rule_derivation_hierarchy)

(EVALUATE SOLUTION UPDATE STATUS = evaluates and uses proposed
solution to update learner status
(i.e., components and paths of
rules and derivation sets of
rules).)

target_rule := GET MINIMAL_ TARGET_ RULE (rule derivation_hierarchy,
learner)

(GET MINIMAL TARGET RULE = selects lowest level rule having at
least one failed path.

NOTE: On success during RULE.TEST, derivation sets are marked
passed so base tends to move toward target_rule; on failure,
some paths may be marked failed; we always select a lowest
level rule in a derivation set with failed types as target.)

. target_rule (with all paths mastered) := TEACHABI RULE TUTOR .

(target_AuTe, 16arner) .

IF TEACHABLE (target_rule, learner)

(TEACHABLE = determines whether target rule has failed paths and
is at base of rule derivation hierarchy or all rules
in one of its derivation sets have been mastered;
in latter case, we could teach non-used
prerequisites.)

THEN (TAA*A)
target_rule (with all Paths masteroH1 != urtr.F THWIQ

www.manaraa.com

= proviaes opcimal alagnosis ana inscruccion on
target_rule.)

UNTIL MATCH (learner, rule_derivation_hierarchy)

CMATCH = determines whether or not learner mastered rules are
equivalent to those in rule_derivation_hierarchy.)

Figure 4. --- Curriculum Tutor.

www.manaraa.com

Implementation of many of the components in a computer environment, however,
would be something less than trivial. One of the components,
GET_MAXIMAL TARGET_RULE for example, would require implementation of the
universal control mechanism assumed to govern interaction among all rules of
knowledge. To date, the only serious attempt to accomplish this was in a dissertation
by Wulfeck (see Wulfeck & Scandura, 1977). Even here, the control mechanism was
not completely independent of the higher order rules. While subsequent work (e.g.,
Scandura, 1981) provides a potential solution to the problem, implementation would
constitute a major research project in its own right.

In effect, while desirable, implementation of a CURRICULUM TUTOR of this sort is
beyond the scope of the present implementation. Our reasons for including discussion
here are primarily to provide a broader perspectivP and to show how the current
research could be extended at a later time.

It is rarely (if ever) possible to fully implement any non-trivial psychological theory as an
operational computer program. The Structural Learning Theory (SLT) is no exception
to this rule. More generally, the SLT makes specific provision for learning strategies
(higher-order rules), the process of learning itself (e.g., via rule interactions determined
by a universal control switching mechanism), skill acquisition, and in general,
instruction on arbitrary content.

THE INTELLIGENT RuleTutor PROTOTYPE

Rather than attempt to implement the SLT in its entirety, the intelligent RuleTutor
prototype is concerned exclusively with the teaching and learning of cognitive
procedural tasks (i.e., problem domains solvable via a single rule: one domain, one
range and one procedure).

In developing the RuleTutor, we introduced simplifying assumptions which made
implementation of the prototype feasible. Nonetheless, the fact that the RULETUTOR is
an essential component of the CURRICULUM_TUTOR is especially important given our
stated Interest in future generalizability. (Although greatly improved, and more general
than the earlier Apple II implementation, we retain the name "RuleTutor" since the
emphasis still is on cognitive procedural tasks.) At a high level notice that the
RuleTutor FLOWform (see Figure 5) also has the same general form as the
CURRICULUM TUTOR. Thus, the latter rape, as the GENERALIZED_RULE _TUTOR
until the rule_derivation_hierarchy characterizing the entire curriculum has been
mastered. Analogously, the RuleTutor repeats the PATH-TUTOR until the targeted rule
(cognitive procedural task) has been mastered.

Implementation of the RuleTutor, of course, required progressive refinement of the
basic design. In the process, we used PRODOC's high level simulation capabilities to
systematically test the design at each stage of refinement. Successive refinement

19

27

www.manaraa.com

oos name: AULETUTA.NRL Language: LIBRARY
'PROGRAM RuleTutor (learner, target rule, problem_type_hierarchy, problem_ type,'mal'ry_criteria, P(k), k, Pl, P2, P3, learner);

learner : status;
tar et rule : ;

pro leM hierarchy :

fro lem ty e: ;
astery:Cr teria : ;

(k) ;

t511)6();

Fi ; 30;

VAR learner : status

ULETUTR.NRW:RuleTutor Copyright 1987 ScanduraMAIN: learner(), target rule(), problem_type_hierarchy(J, maste;,y_criteria()ANGE: learner()

earner (with rule mastered) := RULETUTOR (target rule, learner (with
current rule status as

Andtype hierarchy,
And mastery_7riteria))

RULETUTOR = determines learner status on target rule,
then provides oimal diagnosis and;instruction ontarget_rule until

pt
mastery of all paths (problem_types

I

in hierarchy) is achieved.
roblem_type_hierarchy = hierarchy of problem types corresponding

to path hierarchy of target rule.stery_criteria = criteria used to determine mastery on paths of
target_rule.)

learner (with current status of knowledge of target rule)
INITIALIZE_LEARNER (target_rule, learnerT

kiNITIALIZE LEARNER = loads in learner file (if any) with current
status on target rule, else makes a copy oftarget rule to characterize knowledge with
status of all paths undetermined.)

REPEAT learner (with
DWR8git! MA1F3Ttlip(1WaggeRu; ent status

and mastery criteria
specified))

CDIAGNOSTIC_PATH_TUTOR = provides optimal testing and
instruction on a path given
current state of learner.)

problem_type = equivalence class of problems defined by
a path of the target rule but stored underlearner's knowledge.1

mu RULE MASTERED OR END LESSON (learner)

(RULE_MASTERED = determines whether learner has mastered all problemtypes for target_rule.)

Figure 5. --- Overview of RuleTutor,

28

.11

www.manaraa.com

levels of a more detailed Ruletutor design are shown in the second Rule Tutor
FLOWform.

In general terms, after determining the learner's status at the beginning of a lesson, the
Rule Tutor tests the learner to determine which parts of the to-be-learned target_rule
have been mastered (or retained) and which have not. At appropriate points in the
testing process (e.g., when all prerequisites to a failed problem type have been
mastered), instruction is provided on missing information. This process is continued
until the entire rule has been mastered. Specifically, the high-level REPEAT construct
in the FLOWform indicates that the testing/teaching process is repeated until problem
types associated with ALL paths of the given rule are mastered by the student. (Note:
Although no machinery has been included to allow for rule derivation, control
mechanisms and the like, the importance of the fact that they could be added at a later
time, without having to change the RuleTutor itself, cannot be overemphasized.)

The first major component (a sequence of steps) within the REPEAT...UNTIL loop
involves determining which problem_type (or associated path of the target_rule) in the
path hierarchy will provide the maximum amount of information about the learner's
(relevant) knowledge. This will always be a problem_type which is as yet
"undetermined" (i.e., not yet marked as "mastered" or "failed").

The second major component is an (embedded) REPEAT...UNTIL loop which
generates a test problem of the given problem_type, gets the learner's solution,
evaluates or grades the solution, and then computes the probability that the learner
knows the path corresponding to that problem_type. If the learner's probability of
knowing Is between two predetermined values (say 20% and 80%), another problem of
the same problem_type would immediately be presented.

Otherwise, diagnosis on the problem_type is complete so the Rule Tutor updates its
information on the learner's knowledge: If the learner's probability of knowing is greater
than the pre-set upper limit (e.g., 80%), the RuleTutor will mark that problem_type and
its prerequisites, if any, as "mastered"; otherwise, it will mark as "failed" both that
problem type and those types, if any, for which it is a prerequisite.

The next step involves determining which failed problem types or path at the lowest
level in the path_hierarchy.

Finally, the last major component of the loop (an IF...THEN construct) determines
whether all of the prerequisites of any of the minimal level problem_types/paths have
been mastered. If Fc, instruction is provided on that path. Such a path is an ideal
candidate for instruction. Not only can instruction proceed from a solid base (of
prerequisites) but its position near the base, relatively speaking, provides optimal
potential for transfer to other paths. Transfer of this sort will be detected the next time
through the loop making instruction unnecessary on the affected paths.

www.manaraa.com

TIti=t rule(), problem_
GE: learner{)

Learner (with rule mastered) := RULETUTOR

Copyright 1987 Scandura
type_hierarchy(), mastery_criteriat)

(target rule, learner (with
current rule status as
problem type hierarchy,
and masfery_Eriteria))

(RULETUTOR = determines learner status on target rule,
then provides optimal diagnosis and instruction on
target rule until mastery of all paths (problem_typesIn hieFarchy) is achieved.

problem_type_hierarchy = hierarchy of problem types corresponding
to pathhierarchy of tar et rule.

mastery_criteria = criteria used to determine master' on paths of
target_rule.)

learner (with ct OtAtip_of knowledge of target rula)
:= INITIUrrCOALIZE_LEAR ER (target rule, learnerT

(INITIALIZE LEARNER = loads in learner file (if any) with current
status on target rule, else makes a copy of
target rule to characterize knowledge with
statusof all paths undetermined.)11

. learner (with rule mastered) := DIAGNOSTIC RULETUTOR
(learneF (with current status
and mastery_criteria specified),
problem_type_herarchy)

{DIAGNOSTIC RULETUTOR = provides optimal diagnosis and instruction
until lessbn ends or mastery of all paths
is achieved.)

REPEAT
learner (with teachable problem type mastered) :=

DIAGNOSTIC PATH TUTOR (learner (current status
and mastery_criteria
specified))

(DIAGNOSTIC PATH TUTOR = provides optimal

of

testing and

currnt stte earner,)problem_type = equivalence class ot
a

problems (Penned by
a path of the target rule but stored under
learner's knowledge.7

nstruction on a path given

. problem_type := GET_PROBLEM_TYPE (learner)

(GET PROBLEM TYPE = determines undetermined problem_type
(equivalence class) for testing,
given learner's current state.)

path_level := SET_LEVEL (learner)

(SET LEVEL = Reset test level so as to minimize
expected number of levels that need
to be tested -- e.g., determines
highest and lowest level paths whose
status is still undetermined, then
computes the average,

[(highest I:mest) / 2] + 1 .)

problem_type := GET_PROBLEM_TYPE_AT_LEVEL (path_level)

(GET PROBLEM TYPE AT LEVEL = Find next undetermingd
problem type at level
unless learner has
specified a problem type
or a specific problem,
k := zero (k = problem_counter).)

k := "0"

Ck = number of presented problems of the problem_type)

. P(k) := PROBLEM TYPE TEST (problem t Imp)ri

www.manaraa.com

problem type = corresponds tg path of target rule.
-Plk) = probability or mastery based 511

learner's responses to k test items.) .

REPEAT
. P(k) := PROBLEM_. EM1 (probiem_type, Pl, P2, P3)

. (PROBLEM _TEST = tests on a specified problem type. .

. P1 = minimum probability Pk) abo-fe which .

indicates mastery. .

P2 = maximum probability P(k) below which .

indicateB failure.
P3 = maximum number test items.)._ _ _

test_problem := PROBLEM_GENERATOR (problem_type)

(PROBLEM GENERATOR = generates a test_problem.
test_ problem = test item for specified

problem_type.)

k := add (k "1")

problem_solution := GET_SOLUTION (test_problem, k)

[GET SOLUTION = gets learner's responses and displays
them on screen.

problem_ solution = learner's sequence of responses to
current problem.)

P(k) := GRADE SOLUTION (problem solution, learner,
test_prUblem, k)

(GRADE SOLUTION = compares roblem solution withp
solution to test_ problem
generated by target rule
(idealized learner)
computes new probability of
mastery, P(k);
this computation may be based
on answers to steps in
problem solution and/or may
include-partial credit for a
partially correct answer.)

UNTIL GREATER THAN (P(k),P1) OR
LESS THAN (P(k),P2) OR
GREATER THAN (k, P3)

LP(k) > el (e.g., R0%) or
F(k) < P2 (e.a., 20%) or
k > P3 `e.g., 4S; i.e., problem type success or failure is
known with measured certainty or-a pre-specified number of
problems have been tested.)

learner CcolaTgtquadgMas:(p(k),
learner, P1)

[UPDATE LEARNER STATUS = evaluates proposed solution and
updates learner's Wtatusl If
probability or mastery, F(k),
s greater than given minimum,
1, then mark problem type and

all of its descendant"6/
prerequisites mastered,
else mark problem .type and its
ancestors failed.-

mastery_ criteria: Fl =
success

%.
F2 = ilu %.
P3 = maximum_number_of_test_items.)

problem_type := GET MINIMAL PROBLEM TYPE
(lea?ner, prnlem_type_hierarchy)

CGET_MINIMAL PROBLEM TYPE = selects lowest level
problem type/path
tailed By learner.)

. problem_type := TEACHABLE PATH_ TUTOR (problem_type,
target_eule, learner) .

(NOTE: The target rule includes verbal instruction
. pertaining to the target rule whereas the learner's
. knowledge (rule) does'neY; conversely, the learner's rule. re .4

www.manaraa.com

A.* a. k*,... k&..911 %I oft s-Jad t..01.1 V.; at 1.,y cal. IICL I

CPREREQUISITES PASSED = determines whether all paths
prerequisite to problem_type
have been mastered..}

THEN (744kAA)
learner with path mastered)

:: PATH_COMPONENT_TUTOR (learner, target rule,
problem_type)

CPATH COMPONENT...TUTOR = provides instruction on missing
components of solution path (it all
prerequisites are mastered).)

UNTIL RULE_MASTERED_OR_END_LESSON (learner)

CRULE_MASTERED = determines whether learner has mastered all problem
types for target_rule.)

Figure 6. --- Expanded RuleTutor,

2

www.manaraa.com

The step pertaining to the PATH_TUTOR (marked with "*" in the FLOWform) plays a
central role in the Rule Tutor prototype and deserves elaboration. Specifically, when a
learner has failed a problem type and is to receive instruction, he or she may very well
know some components of the rule path corresponding to that problem type.
Consequently, in an optimal system, instruction should focus on those components
which the learner does not know. In general terms, this can be inferred from the status
of the steps of paths which are known to be mastered or failed.

The RuleTutor also allows the learner some discretion as regacds selecting the kind of
instruction to be provided. This option recognizes the fact that a given learner may
need or wish to receive a particular type of instruction.

The PATH_TUTOR FLOWform shown below describes the above process in more
detail.

It is important to observe that receiving instruction is conditional on whether or not the
component in question is .'ready known. Also, whereas the instruction will be tailored
to both specific path components and individual tastes, the PATH_TUTOR does not
assume mastery. Rather, mastery is determined the next time the RULETUTOR
recycles through its diagnostic phase (i.e., diagnostic steps).

Just before the instruction begins, GENERATE_PROBLEM is used to generate a
test_problem corresponding to the failed path. If the current component is failed,
INSTRUCT provides instruction on the component as the learner desires. On mastered
steps, the PATH_TUTOR will enter the answer automatically (for purposes of
instructional efficiency) and proceed to the next component. The process repeats until
all components of the path have been covered.

Notice that in addition to being able to generate needed problems, actual operation of
the RULETUTOR and PATH_TUTOR requires interpretation of arbitrary portions of the
rule being taught. For example, at various points these tutors must generate answers
to particular steps either for display purposes or for comparison with learner answers.

In this regard, all rule components are represented in terms of trees involving only
structured components. The RuleTutor prototype incorpnrates an interpreter which can
be used with any rule in which the terminal elements cor espond to PRODOC's library
rules. Specifically, interpretation of a node in a procedure tree (i.e., FLOWform) will be
a function both of the structure type of the node (sequence, selection, etc.) and of the
children of the node.

If the node is a sequence node, for example, its children are interpreted successively. If
it is a selection node, its condition child will select one of the two other children nodes
to be interpreted. Those children nodes which happen to be terminal nodes
correspond to previously compiled procedures (psychologically relevant units, or
atomic rules) which are executed directly.

21

www.manaraa.com

EPATHTUTR.RULJ:Path_Component_Tutor Copyright 1987 Scandura
problem_type (mastered) k=

PATH_COMPONENT_TUTOR (learner, target_rule, problem_type)

(PATH_COMPONENT_TUTOR = provides instruction on missing components of solution
path associated with current problem type.)

solution_path (with status set at first component) :.
COMPONENT_KNOWLEDGE (learner, target_rule, problem_type)

(COMPONENT KNOWLEDGE = determines whether components of path associated with
the current problem_type are mastered, failed or
undetermined.)

test_problem := GENERATE_PROBLEM (problem_type)

. learner (with all components of solution_path mastered) := .

. COMPONENT TUTOR (test_problem, solution_path, learner)

. (COMPONENT TUTOR = testing and/or instruction on unknown components .

. of current problem_type.)

REPEAT

UNTIL FINISHED

. learner := CONDITIONAL TEACH COMPONENT
.

. (test_probleff, sclution_path, learner)

IF COMPONENT_FAILED

THEN

ELSE

(solution_path)

. problem_ {{updated i, solution path (updated) .. .

. TEACH COMPONENT (test problem, solution_path, .

learner) .

.
.

(TEACH COMPONENT = provide instruction on current .
.

component.) .

trial_solution :=INSTRUCT (test_problem, solution_path)

(INSTRUCT = give learner option of responding with knowledge
Of results, being shown how or being given
verbal instruction; allow repeats.)

problem solution (updated), solution_path (updated):=.
NEXT_COMPONENT = (test_pronem, solution_path)

[NEXT COMPONENT = generates answer to current component;
advances to the next component of the
solution_path for testing and/or
instruction.)

problem solution (updated), solution path (updated):.=
NEXT COMPONENT = (test_pro5lem, solution_path,

learner)

(NEXT COMPONENT = generates answer to current component;
advances to the next component of the
solution_path for testing and/or
instruction.)

(soluti,m_path)

Figure 7. Path Tutor FLOWform,

0 A

www.manaraa.com

IMS'S PRODOC System

In its most basic sense software development involves describing the tasks to be
solved -- including the given objects and the operations to be performed on those
objects. Moreover, such descriptions must be precise in order for a computer (or
human) to perform as desired. Unfortunately, tha way people describe objects and
operations typically bears little resemblance to source code in most contemporary
computer languages.

There are two potential ways around this problem. One is to allow users to describe
what they want the computer to do in everyday, typically imprecise English (or to
choose from a necessarily limited menu of choices). This approach has some obvious
advantages and a considerable amount of research is underway in the area. The
approach, however, also has some very significant limitations: (a) it currently is
impossible to deal with unrestricted English, and this situation is unlikely to change in
the foreseeable future, and (b) even if the foregoing limitation is eventually overcome,
the approach would still require the addition of complex, memory intensive "front ends".
These "front ends" interact with the user's typically imprecise English statements and
effectively "try to figure out" what the user intends. The result invariably is a system
which is both sluggish in performance and limited in applicability.

PRODOC is based on a second, arguably more flexible approach. The terminology
used in PRODOC may be customized so as to match the way human experts in any
given application area naturally describe the relevant data and operations. This
customized terminology is all based on a uniform, very simple syntax that might easily
be learned by an intelligent human (in a few minutes time). The approach taken with
PRODOC Is absolutely general, as well as far more efficient and easy to use.

The PRODOC system provi' les support for the entire systems software development
process, including requirements definition, system design, testing, prototyping, code
generation and system maintenance. It consists of four distinct but complimentary and
fully compatible software productivity and quality assurance environments running in
640K of memory under MS-DOS. Each of these environments makes use of Scandura
FLOWforms. (FLOWforms look similar to Nassi-Shneiderman flow charts, but they
make better use of the rectangular screen and allow simultaneous display of as many
(or as few) levels of representation as may be desired.)

(1) Applications Prototyping Environment (with interpreter and expe,t assistant
generator) (PRODOCea) - is suitable for use by nonprogrammers as well as
programmers for designing, documenting, implementing, and maintaining suitware
systems In an integrated, graphically supported, top-down structured environment. In
addition to English text, the availability of greatly simplified, very high level library rules
makes PRODOCea ideal for rapid prototyping. Support for input and output data

22

www.manaraa.com

IMS's PRODOC
Software Development Environment

Specific Application
1.1.11.111111 NOMMEN,

Domain Expert Using PRODOCea

Expert Ass;stant
Using PRODOCea

Debugging
Using PRODOCea

CExamples of Application

FUTURE OPTION:
Domain Expert uses computerized
Structural Analysis

FLOWform Specification
of Application

Domain Expert or Systems Designer
Using PRODOCea

Interpretable FLOWform
Using Library Rules

Systems Designer or
Programmer

Using PRODOCIp

Library-based
FLOWform Enhanced

with Pascal
Pseudocode

4.101 N
PRODOCIp
(automatic)

(Pascal only)

PRODOCIp
(automatic)

(Pascal only)

Programmer
Using PRODOCpp

caressmaa

Pascal, C, Ada,
COBOL or FORTRAN

Pseudocode

PRODOCpp
(automatic)

Figure 8. --- Overview of PRODOC software development system.

36

www.manaraa.com

structures also makes it possible to directly reflect arbitrary semantic properties.

The current version of PRODOCea employs a general set of library rules especially
designed for prototyping. Table 1 shows the complete list of library rules and their
parameters.

CATALOG OF LIBRARY RULES

- - INPUT/OUTPUT -
displaystructure

(ROOT_ELEMENT,DISPLAY_PARAMETERS,DISPLAY_NON _TERMINAL)
display

(ELEMENT,DISPLAY_PARAMETERS)
load

(ROOT ELEMENT,DOS_NAME,DRIVEIFILE_TYPE)
save

(ROOTELEMENT,DOS_NAME,DRIVE,FILE_TYPE)
get_input

(ELEMENT,DISPLAY_PARAMETERS)
clear video

- - OPERATIONS - -
insert component

(SET,PREVIOUS_COMPONENT,DISPLAY_PARAM_OR_VALUE,NODE_TYPE,NAME)
delete component

(COMPONENT,SET)
share_ component

(COMPONENTISET,PREIOUS_COMPONENT)
delay

(SECONDS)
Insert

(SOURCE_ELEMENT,DESTINATION_ELEMENT,INSERT_POSITION)
delete

(ELEMENT,START_POSITION,LENGTH)
deleteclisplay_parameters

(ELEMENT)
move_component

(COMPONENT,SOURCE_SET,TARGET_SET,PREVIOUS_COMPONENT)

- - PARAMETER FUNCTIONS (Character / Arithmetic) -
concatenate

(FIRST_ELEMENT,SECOND_ELEMENT)
extract

(SOURCE_ELEMENT,START_POSITION,LENGTH)
add

(ADDEND1,ADDEND2)
subtract

(TOP,BOTTOM)
multiply

(FACTOR1,FACTOR2)

23

v7

www.manaraa.com

divide
(DIVIDEND,DIVISOR)

power
(BASE ,EXPONENT)

greatest_integer
(X)

(X,BASE)

(X)
round

(X,PRECISION)
component_with_value

(SET,VALUE)
next component

(SET,PREVIOUS COMPONENT)
common component

(SET1,SET2,Nth_ONE)
previous_ component

(SET,COMPONENT)

modulo

absolute value

- CONDITIONS
match

(STRING1,STRING2)
equal

(X,Y)
unequal

(X,Y)
less than

(X,Y)
less_than_or_equal

(X,Y)
greater than

(X,Y)
greaterthan_or_equal

(X,Y)
next_component_exists

(SET,COMPONENT)
same

(COMPONENT1 ,COMPONENT2)

- - LOGICAL CONNECTIVES - -
and

(EXPRESSION1 IEXPRESSION2)
or

(EXPRESSION1 ,EXPRESSION2)
not

(EXPRESSION)

www.manaraa.com

- - ASSIGNMENT -
assign_role

(ROLE,ELEMENT)
or

ROLE = ELEMENT
assign

(ELEMENT,VALUE)
or

ELEMENT := VALUE

Table 1. -- Latest library rules.

Considerable effort was expended to insure that rule construction is easy as possible
for potential ICBI authors. Given our initial emphasis on arithmetic, we undertook a
structural analysis of the whole number algorithms for addition, subtraction,
multiplication and division. In this case, structural analysis involved:

1. selecting prototypic problems, including the goal variables.

2. identifying critical components which can vary while still
requiring the same solution method. This effectively defines the
domain of the rule.

3. solving those problems step by step as the learner is to solve them
(after learning).

4. Identifying operations to be performed and the conditions
underlying the decisions to be made in carrying out each step.

5. determining whether some succession of operations after a
condition ever generates a state, satisfying the same condition. If
so, the condition defines an iteration or "loop"; otherwise it
defines a selection.

In general, the result of carrying out the above steps is only a partially defined rule
procedure. Specifically, it was clear only what happens under conditions (e.g., A)
associated with the selected problem. To determine what happens under alternative
conditions (e.g., not A), the above steps had to be repeated with new problems.

Once a rule procedure at one level was fully defined, the various components of the
procedure are further refined in the same way. The process continues until all
components are atomic. (For more details on the process of structural analysis see
Scandura, 1982, 1984a, 1984b).

The domains and ranges of the resulting rules are all very similar to the tree

25

39

www.manaraa.com

representations used as illustrations in the first section on the problem and rule
constructs. The main point to stress in this regard is that essentially any domain (or
range) structure can be represented as a hierarchy of ordered sets.

The problems on which the Rule Tutor operates are closely related and derived directly
from rule domains and ranges. The data FLOWform in Figure 9 shows how data
structures (problems) are represented using PRODOC. In particular, notice that some
elements (e.g. marked) may have two (or more) parents (i.e., be an element of two
sets). From a functional standpoint perhaps the most important feature of PRODOC is
that all elements of any such data structure may be directly accessed by operations and
conditions in the associated rule.

Component operations and conditions in the procedural portions of procedure
FLOWforms correspond to the kinds of atomic rules needed in the proposed arithmetic
library.

Constructing a library whose constituent atomic rules correspond to these cperations
and conditions was primarily a matter of defining atomic rules (corresponding to the
arithmetic steps) which both have an easily understood syntax and are meaningful to
domain experts.

The "trick" in formulating the component operations and conditions of the various
FLOWforms was to do so in a way that maximized generality (i.e., utility) of the
components, and hence minimized their number, without losing their heuristic
relevance (to the content in question).

It is this PRODOC environment that is used as the "authoring" system. An unique
feature of PRODOCea is its ability to immediately execute interpretable library rules.
This makes it relatively easy for authors to construct interpretable specifications for
cognitive procedural tasks. Once a subject matter expert knows exactly what a
human/computer assistant is to do, it is a relatively simple task to develop a rule which
'raptures the competence necessary foi performing the required tasks. Example rules
constructed for arithmetic are shown in the following section.

Other PRODOC environments are:

(2) Applications Prototyping Environment (for use with a Pascal compiler)
(PRODOCIp) - is identical to PRODOCea in so far as prototype design and the use of
library rules in rapid prototyping is concerned. Instead of an interpreter, however,
PRODOCIp includes a generalized code generator which makes it possible to
arbitrarily mix Pascal code with library rules, thereby gaining the prototypina
advantages of any number of customized, arbitrarily high level languages, along with
the flexibility of Pascal. This feature makes it possible, for example, for a programmer
to speed up or otherwise add finishing touches to a working prototype created by a
nonprogrammer.

26

40

www.manaraa.com

(DOMAIN]:

(A]:

Domain A
/\

B C
/ I \

\ I

E \

raraimmosnwoormudwavanyssawwwr.

=/.....1W.NNIRS.114
wm.gami..W:I=MOJWNOW4.1.MLIIIMII.!1...41.11AM..7,.1

11.......Na...MOLMAKSAMI.WAS.I.IMMYYMUP MM.,..1.1MM=a. aila1

=1*.
.MMM.%1MWMI.MORIIda..Me

116.0.11101111101111Vgam,

gatS= 4.mommlaw
/.../..011111 11111.10111140.1.111111.1./...111

Es.,1111111..

(Cl:

..ar....amerammt,mmommUmswammearawalmwee.

1

(H]:

www.manaraa.com

(3) Programming Productivity Environment (PRODOCpp) - has all of the design,
etc. features of PRODOCea. PRODOCpp comes in standard form which supports text
and source code in any programming language.

In addition, pseudo code support currently is available as an option for Pascal, C, and
Ada, combining the clarity and ease of use of high-level fourth generation languages
with the flexibility of third generation languages. These options include syntax
checking, consistency checking, declarations generation and source code generation.
Pseudocode support is totally data driven so similar support for other third and fourth
generation languages may be added without modifying PRODOC itself.

The relationship between Pascal pseudo code in the SORT FLOWform and the
corresponding full source code is shown below.

Note: This illustration shows only terminal elements of the FLOWform. All design
levels of the sort routine are displayed in the second FLOWform.

(4) Library Generation (PRODOCIg) - is for "in house" use only and is used to
integrate available rule libraries and new library rules into either PRODOC prototyping
environment, thereby creating customized versions of PRODOC for particular
application areas. Since this requires access to PRODOC source code, customized
versions of PRODOC will normally involve collaboration between users and IMS.

The PRODOC series has been implemented in Pascal and currently runs under
MS-DOS.

SAMPLE ARITHMETIC AND LIBRARY RULES

As emphasized above, the RuleTutor is designed to work in conjunction with rules
representing content to be taught. Consequently, to construct a working ICBJ Rule Tutor
system, one must first create rule specifications for the content (e.g., some cognitive
procedural task).

Our work with potential !CBI authors (e.g., Scandura, 1984a, 1984b) shows that by
applying the method of structural analysis systematically, they typically are quite able to
construct FLOWforms representing procedures for solving tasks in their areas of
expertise as long as they can express the components of those procedures in terms
with which they are familiar. In a similar manner, they also are able to identify (and
hence represent) critical features of the tasks themselves.

Note: These abilities have been demonstrated empirically using a recent formulation of
the method of structural analysis (e.g., Scandura, 1984a, 1984b). Given content and
pedagogical competence, and guidance in the use of structural analysis, educators

27

www.manaraa.com

(000T.M.3kbeft Cookstown 1,41S Seendure

t New gene numbers 11 to SOO) to be sorted? 1

teedln Int

welteln Center below numbers to be sorted. Press kbeturn) atter 'rich. 1

ram

00

g es 1 is n

twilit 14[13)

f00

00

l Is 1 to n-1

POO

00

1 se 1 to n - t

tr 4(13

SWIM

) 4(101

teep Is AEI]

etj3 I. 141.11

atj13 to tees

weltelo file resulting order is .r

'04

CO

1 its 1 to n

wetteln 1ai1313)

43

MOAN sort itnput.otseputra

VA, its INUCEIts
11 INT11004
es MAT tl..S001 Of INTEGar
j1 111=011
timer MEM;

I1N
write CHOP some numbers il to S001 to be sorted? 11
reedln Intl
0110111

totteln rtnter below numbers to be sorted. Press <Return) otter ersch.'))
FON I is to n 00

readln 14131
CMOs
FON t I* l to n1 00

FOS) ry 1 to n I DO
SEWN

If sill) 4410.3 Thth
geGIN

tee, raj])
oil) afkl,'
atjoli :a COO,

Chu
CMOs

SECO
writeln 1'The resulting order Is r
rot' t = t to n 010
writeln ketill1

ENO
ENO.

www.manaraa.com

(with backgrounds similar to potential ICBI authors) were able to create rule
representations functionally equivalent to those constructed by expert analysts.

The FLOWform below Whole Number Subtraction is illustrative. This FLOWform is
written in English and can be used to solve any given column subtraction problem -- to
accomplish this, simply carry out successive steps of the FLOWform in turn.

Although authors can be taught how to perform structural analysis, they do not normally
do so -- nor for that matter is it absolutely essential in order to identify rules in their
areas of expertise. Potential authors with some programming experience will often
prefer to construct flow charts directly without following any particular systematic
method of analysis.

The availability of PRODOC greatly facilitates the task of specifying rules in this manner
(i.e., directly). Instead of having to draft rule specifications (usually on paper) and
converting these to increasingly precise designs, all of this can be done using
PRODOC (Scandura, 1987) in an integrated, graphically supported top down
structured development environment.

Users are required first to represent rule procedures at a very high level by describing
what they do in very general terms. Then, these high level descriptions are refined
step-by-step until each component step (of the procedure) is atomic (elementary) -- in
the sense that it is either already aval able to the members of the targeted school
population, or is so simple that it would be impossible to teach only part of the step (to
members of the population) without their mastering the entire step (i.e., the step is
all-or-none as defined by Scandura. 1971, 1973a).

PRODOC makes this possible by allowing the user to view, create, modify and revise
graphical representations of rules directly on the IBM PC AT (XT) screen. For this
purpose, PRODOC uses a three dimensional variant of the Nassi-Shneiderman
representation, called the Scandura FLOWform, The clarity of FLOWforms alone
makes it much easier to detect errors, if not avoid them altogether. In addition to being
even easier to read, however, FLOWforms make better use of available screen space,
and allow the simultaneous representation of as many (or as few) levels of refinement
as may be desired.

Not just any FLOWform will do, however. In order for a rule/FLOWform to be usable by
the Rule Tutor the terminal (atomic) operations and conditions of the rule must be
interpretable. Analogous to the above requirements for human atomicity, these atomic
operations and conditions must correspond to subroutines in the atomic rule library
available to the ICBI Rule Tutor.

We have found the library of rules given in the previous section on PRODOC to be
more than adequate for arithmetic -- tasks such as column subtraction, addition of
fractions, etc. Indeed, one can use these library rules to create a FLOWforrn (rule)

28

4

www.manaraa.com

Whole number subtraction

I. Clo to right mom column

WIIILE

DO

A. While more (full) columns to 10

IF B. Top

TI IEN

ELSE

digit > w bottom digit

2. Subtract column (using haNic facts)

3. Remember starting column and go to nest column on left

WI IILE

DO

C. While 0 k lop (4i1

1. (in to ilint ciskintl 1,11 left

REPEAT

UNTIL D.

3. Bliff114 I from current column and regroup in column In right

Until column i. starting column

6. Subtract column

7. Go to eal column

A. Subtract column (Loin!, Kicit fntc)

Figure 12. --- Old FLOWform for subtraction.

www.manaraa.com

iSUBTRACT.EVL3:subtract numbers by columns Copyri9ht 1967 ScanduraOMAIN: MINUENEY, SUBTRAHENDO: COLUMNSO, OPERAT(ON DESIuNAIORSO
AM(3E: DIFFERENLEI

IEEERENCE := whole_number,subtrattion cMINUEND, S'UPTRAHEOD)

display_structure (9ivens)

current column = ones

REPEAT IF 9reater_than_or_equ31 (top_di9it. bottom_dilit)

I

THERf.differencedi9it :u subtract (top_digit, bottom_dilit)

disp)3y (difrlrence_digit)

ELSE,.

6,

borrow_di9it = top_digit

REPEAT4lborrow_di9it = next_component (MINUEND, borrow_di9it)

UNTIL unequal (borrow_di9it, '0')

REPEATS borrow_di9it := subtract (borrow_dioit, '1')

display (borrow_di9it, 'c7')

borrow digit = previous_component (MINUEND,
barrow digit)

borrow_di9it := add (borrow_di9it, '10')

display (borrow_di9it, 'm-1,c7')

borrow_row := subtract (borrow_row, '1')

UNTIL same (borrow_digit, top_digit)

difference_di9it := subtract (,:op_di9it, bottom_digit)

display (difference_digit)

last_subtracted_column = current column

current_column = ne*component (COLUMNS. current_column)
UNTIL not (ne:Itcolumnsgists)

Figure 13A. --- Subtraction represented in terms of PRODOC's library rules.

www.manaraa.com

SUBTRACT) :subta sc t _number s. tit) columns ; IDRAR pr
.4 0 no 410 0. 4.41 ND 40 /01 ,
CDOMAINJ:

ow .1 1. 040 OM N. 00 00. 00

YU .0 II. Pl

4. 1.1. 411 10 . 0. PP .0 le it MO 0..0 . ow NI MO .0 144. wt. PO NI Ma IN

I. 41.0 IN NO 4. 0.
*

ai

10. I 0. . 1.1 MO NV .4 MI NI 4. .4 .0
. 0

.0 No 40. 0 owl 10. PP -0 4. 110 I. Ps IN

00 PO 404 101, 41. Imo 4.1 4. .1.14 410 Wm 1.10. ------..
ape mop Mb. p pm. 0.1 WO Mb II. IN 4.14. O. 04 1.1 01, m. N. ow no bow ea a. 1.1

iSUPTPAHEM:01.11,0

[16.: 4
i 14 11

I 100 4. *ft NI 411 I, MO IMP I 66111 I 1.

P 01 0 1.0 04

w43
. . 0 e . .4 N .0 N. M . 0 We 4. N 0 . N N 0 . . 0 m 0 0 *0 , m . o .0 0 . . N.. . 0 0 I. IN .4 10 .4.

1...... - . .1 .. .4 0. am M.4 IN IN .1 eaa MO We OA Doe .. .0 .. ea . .0 NI .. 0. 6. 40 NI MI . 011 .1. I. ... MP

4. :1

- ... -- - _. PA 1.. IN .. . NI . .0 IN I.. 01 O. IN am al. P 0 I. 0. 0 . ..1 oe ema 4. .0 le. 1. IN . so 4.4.....0

. I. O. *V ...MI NI Fa .4 , 0. 0. .. N. m ... ma 01 ... 40 1.0

ECCILUMOS J
0* IN 1044/ Op 44 0.0 0.

00 0. 04 Ma a. MO 0. 100.0 Ps 1.0 a 14.0

(INE'3.1:c.)1140

....,

l 4

amp . OA OM Mil VIP .1 MD D. 10 01 re .1 .11 4441

I

51 :0407
.. Pe. 10 1 IN spa I. 1.1 amm aa ea . .. oto Om . . moo IN 0.4 .o

,u):2

I N. , 0. 40

1) ".{

411 .4 .4. I. Me

1141 1)
SW lam WA 6144 I.

.41. Iwo 41. 1 0.4
moe ley 404 .4

0:0

e Mi an aa

ITHOUSANDSJ:N31
. 0.11 &OP 0,8 4.0

F./ NI WO .1 O.

10, WO IVO 011. I. I* IMI Mb Ye 1/ ki INN

j
00 11.0 110 1. MD .4 *ma MO WO NO

0:0

.1 . .1 fp- . Ma I. Mr 10 I. we ow .

00. 0. .0 re

MI ...I 04 .1

00 MG

00 111

III 4.

0.

011 4.0 044 ma Oa mo a. ma

P.. ore Ima M. 04 0. 04 .1 ma 'ma

00

.6 sr ..

6.1 .1.1 11II
AP,

1.0 00 re dr 141,

www.manaraa.com

COPEPATIO_DESIGNATORSPAA

[Cminus_sign349t1102(3:-

[Cunderline]*12,m27:

ICRAW]:

CDIFFERENCEJ:Ot13,31,c6

r

0

Figure 1313, --- Subtraction data FLCWform,

48

www.manaraa.com

representing essel itially ANY cognitive procedural task. For example, the subtraction
FLOWform below is constructed entirely from atomic rules in PRODOC's current library
(see Figure 13A).

The numbers to the left of the various structures (higher level steps) of the FLOWform
correspond to the numbered conditions and operations in the previously di! sussed
SUBTRACT.OLD FLOWform. The detailed (terminal) steps in the SUBTRACT.EVL
FLOWform correspond to library rules.

This rule actually executes under PRODOCea. It simulates the process of subtraction
as a child might if he or she were to actually perform the steps. While memory
limitations of 640K under DOS preclude the use of fancy graphics, the actual display is
in color and quite realistic. (It should be emphasized, however, that the system is set
up so that it would be a relatively easy task to hook" a graphics package into the
system when more memory becomes widely available -- e.g., with the OS 2 operating
system.)

In addition, PRODOC was used to create all of the needed data structures. The
structure of the problem domain and range are shown in Figure 13B.

To maximize ease-of-use, certain rules in PRODOC's library have been modified so
that they perform many of the auxiliary operations automatically (and transparently from
the perspective of the user). For r xample, the "display" rule has been enhanced so it
can display an entire data structure with one statement. It does this by allowing lower
level data elements to "inherit" higher level attributes pertaining to position on the
screen, color, intensity, etc. For example, consider the GIVENS data structure in Fig 14.
In this case the numerals corresponding to the top and bottom digits will automatically
be displayed as specified by the structure as a whole. The parameters t (top margin)
and m (left margin) are used to specify location on the screen. Thus the top row might
be specified at row (with top margin) 10 and the bottom row at row 11. Rather than
having to give the precise coordinates of each digit separately, inheritance makes it
possible to specify these margins where they naturally belong -- with the top and
bottom rows. The left margin is specified similarly with the various columns (ones, tens,
etc.).

In this case routine display operations are largely transparent to the user. Thus, in
subtraction the difference digits are automatically displayed in the proper location
because they automatically inherit the appropriate coordinates from the DIFFERENCE
and COLUMN structures.

The basic question, of course, is how easy it is to construct a given rule from the
available library. In general, the basic elements in most programming languages are
chosen as they are to allow the programmer as much flexibility as possible while
maximizing computational efficiency (i.e., during execution). Typically, such languages
are not particularly user friendly, nor do the basic statements in the language, or the

29

www.manaraa.com

MJATRACT1 : subtr act_number s_by _columns : Cl L IBPARY ; C procedure] :

ESIVENSJ:

CM INUEND1:e0,10, c3

I{INTEGER_ELEMEJT } :0:1 le/

[{ INTEGER _ELEMENT}:Q: 2

1{INTEriER_ELEMENT}:0:0

({INTEGEE .ELEMENT):0:4

ESUBTRAHEND) :Chi 1,c3

1{111TEGEP ELEMENT} 37:4

[{ MUR ELEMENT} :0:3

1{ INTEGER .ELEMENT} :0:3

14: INTEGER_ELEMENTMQ:1

CCOLUMNSJ :

CONES1:0m40

E4PITEGER_ELEMENTI:0: 1 1r
[{ INTEGEP_ ELEMENT} :4:4

INTEGER_ELEMENT) :6):o

CCENS]:(437

14 INTEGER ELEMENT :0: 2

[{INTEGER _ELEMENT} :0:3

I{ INTEGER..ELEMENT}:g: 0

F.NUNDREDSJ*1134

IKINTE6ER_ELEMENT:-:0:0

({ INTEGEP .ELEMENT} :t?: 3

INTEGER. ELEMENT} :0: 0

CTHOUSANDS1:0-431

PIEGER_ ELEMENT) :0:4

INTEGE1; ELEHENT> :(9:

Itrmrrnry n-

< GIVENS

www.manaraa.com

EOPERATIONJCSIGNATORSJ:Qc4

Eiminus_si9n3:0,11,m2P..:

[Eunder 1 ine] :Qt12 , m27:

[GOALS]:

ED IFFEFENCE3:Clt13 .c6

li.INTEGFI.ELEMENT}:0:0

1=INUGER ELEMENT3:1D:0

[{INTEGEP_ELEMENT}:0:0

I<INTEGER_ELEMENT1:60

(INTEGEPELEMENT):C1:1

(INTEGERELEMENMG:2

INTEGER ELENEND:0:0

iINTEGER_ELEMENT>:0:4

INTEGER_ E LEMENT) :0: 4

INTEGEP.ELEMENT>:g:3

INTEGER.ELEMEND:Q:3

INTEGER.ELEMENT):0:1

INTEGERELEHEtin:0:0

INTEGERELP,ENT):Q:0

INTEGER ELEMI0D.:0:0

INTEGER ELEMENT} :0: 0

Figure 14. --- Subtraction data FLOWform showing GIVENS and GOALS,

r1

< GOALS

www.manaraa.com

predefined data structures (e.g., real numbers, arrays) have any special relevance to
particular applications.

As emphasized above, although the atomic rules in the current PRODOC library are
quite easy to use, relatively speaking, educators with no programming experience
whatever would probably require some training.

A complete set of FLOWforms for simulating the other arithmetic operations is given as
an appendix.

It is important to notice that certain components of some operations (e.g., the division
algorithm of Figure 15) correspond to the whole number algorithms. In effect, what are
high level rules in one (the whole number) context are atomic ingredients in other (e.g.,
division) contexts.

In the fullest sense, of course, teaching arithmetic involves much more than simple
algorithms: Teaching meaning of the operations and verbal problem solving are just
two such goals.

Characterization of arithmetic in terms of rules in this broader sense is beyond the
scope of the Rule Tutor since it clearly involves sets of lower am? higher order rules
(e.g., Scandura, 1971, 1973a, 1973b). The general nature of these relationships may
be summarized as shown below. See Scandura (1971; 1973a, ch. 5) for a more
general discussion of the relationships between syntactic and semantic knowledge in
mathematics.

A. syntactic 1. arithmetic
(numerical) algorithm
representation
of given
problem

A'. syntactic
representation

> of solved
problem

Higher order rules for genes ating syntactic rules from concrete rules, and vice versa

B. semantic
(meaningful)
representation
of problem

2. procedure corresponding
to algorithm

based on concrete
operations

B'. semantic
representation

> of solved
problem

In this case, problems of the type A would include column subtraction, multiplication of

30

52

www.manaraa.com

P.

rVISION3:division Copyright 1987 ScanduraIN: DIVIDENDO, DIVISOR), OPERATION DESIGNATORSO, COLUMNS{}QUOTIENTO, REMAINDERO

ivide divisor into dividend.

display_structure (GIVENS)

TRIAL DIVISOR = TEN

display(TRIAL_DIVISOR)

RUNNER = ONE

TRIAL_QUOTIENT_POSITION = THOUSANDS

CURRENT DIVIDEND := common_component(TRIAL_QUOTIENT_POSITION,DIVIDEND)

TRIAL DIVIDEND := common_component(TRIAL_QUOTIENT_POSITION,DIVIDEND)

display(common_component(TRIAL_QUOTIENT_POSITION,DIVIDEND),' al:')

IF greater_than(TRIAL_DIVISOR,TRIAL_DIVIDEND)

THEN TRIAL DIVIDEND := add(multiply('10',TRIAL DIVIDEND),
common component(previous component(COLUMNS

TRIAL QUOTIENT POSITION),
DIVIDEND))

display(common component(previous component(COLUMNS,
TRIAL_QUOTIENT_POSITION),DIVIDEND),' al:')

WHILE next component exists(DIVISOR,RUNNER)
E Nomore digits 3

DO TRIAL QUOTIENT_ POSITION =
previUus_compoent(COLUMNS,TRIAL_QUOTIENT_POSITION)

RUNNER = next_component(DIVISOR, RUNNER)

COL := add(COL,'1')

CURRENW
TIM6ADggpOniiigagERRFTTRIDRYilMS

IF less_than(CURRENT_DIVIDEND,DIVISOR)

THEN TRIAL QUOTIENT POSITION .=

previaus_compoffent(COLUMNS,TRIAL_QUOTIENT_POSITION)

COL := add(COL,'1')

CURRENT DIVIDEND : ada7CkijftiplfCeURRENT DIVIDEND'10'), 6
c5mmon_compon t(TRIALQUO IENT_POSTTION,DIVIDEND))

REPEAT CURRENT_ QUOTIENT = common component(TRIAL_QUOTIENTPOSITION,
QUOTIENT)

REPEAT IF greater_than(CURRENT_QUOTIENT,'0')

THEN ---Idisplay(CUPRENT_QUOTIENT,' b0,c7,t-1:')

ELSE

CURRENT_ QUOTIENT :=
subtract(CURRENT_QUOTIENT,'1')

display(CURRENT_QUOTIENT,' b0,c6,al:')

CURRENT QUOTIENT := greatest integer(
dividU(TRIAL_DIVIDEND,TRIAE_DIVISOR))

display(CURRENT_QUOTIENT,' b°,c6,a1:s)

53
Figure 15. --- Division showing operations (add, multiply, etc.) which correspond to

www.manaraa.com

fractions, etc. Those of type B mignt include Dienes hlocks, packets of dowels grouped
by powers of ten, pie charts (for fractions), etc. Similarly, procedures of type 1 would
include the subtraction algorithm, the algorithm for multiplying fractions, etc. and
procedures of type 2, concrete manipulations on Dienes blocks, pie charts, etc. The
double arrow represents two higher-order rules, one of which can generate concrete
rules (e.g., concrete manipulations on Dienes blocks) from the corresponding syntactic
rules (e.g., whole number algorithms). The other higher-order rule does the reverse.

Clearly, the proposed RuleTutor would not (simultaneously) accommodate the sets of
lower and higher order rules implied by such a broad conception of arithmetic. What it
could do, however, is provide diagnostic testing and instruction with respect to any
individual (lower or higher order) rule associated with arithmetic.

In the case of subtraction, for example, the meaning of subtraction as taking away and
the place value concept in representing numbers are crucial. More particularly, the
meaning of a rule (e.g., for subtraction) can be represented In terms of manipulations
on concrete objects represented in a standard place value format. Thus, for example,
consider the pair of numbers, 132 and 27, represented concretely as

100

I:1

In this case, the student might be shown how to take away the amount represented by
the smaller quantity from the larger by taking away from the larger quantity as many
groups of each size as there are in the smaller quantity. Where the number of groups
of a particular size (e.g., ones) in the larger quantity is smaller than that in the smaller
quantity, the student learns to first convert the next larger grouping (e.g., tens) in the
larger quantity into a smaller grouping. For example, one ten's group would be
converted into ten ones so that the seven ones in the smaller quantity might be taken
away. Implicitly, the student also learns to begin work with the smaller place values
(groupings) and to work toward larger ones.

Normally, students are not taught general rules (procedures) for performing arithmetic
operations on concrete objects in a systematic way. Rather, students gradually acquire
an informal awareness of such rules by solving a variety of specificconcrete problems,
with concrete objects and/or pictorial representations of such objects. Dienes blocks
(e.g., Dienes, 1960) are commonly used for this purpose. Nonetheless, manipulative
rules CAN be taught explicitly.

31

www.manaraa.com

Allowing a prospective author to specify manipulation rules (in a form the Rule Tutor can
use) would require extending the above library by adding (to it) atomic rules
corresponding to the above components (e.g., take away, etc.). The "taking away"
atomic rule, for example, wog Id have three parameters, one referring to the kind of
otject (e.g., block, dowel), and the other two to the respective numbers of those objects.
Thus,

resulting_no_objects :=
take...away (object type, original_objects, objects...to...take...away)

It is important to emphasize in this regard that new atomic rules identified as a result of
analyzing the arithmetic domain can be used to supplement the general purpose
library that is currently available. In turn, still additional atomic rules may be added as
new domains are analyzed. The only limitations in this regard are computer memory
and/or addressing capacity of the operating system.

Indeed, in the course of normal use,the PRODOC library has been used to build a wide
variety of prototypes, ranging from arithmetic to creating invoices.

RELATIONSHIPS TO OTHER RESEARCH

Much of the most directly related research and thvelopment work has been cited
and/or referenced in the body of this proposal. By way of summary, Prof. Joseph M.
Scandura and his group at the University of Pennsylvania have been primarily
responsible for:

(a) the Structural learning Theory generally, and particularly the theory of
diagnostic testing and instruction on which the intelligent RuleTutor is based (e.g.,
Scandura, 1971, 1977, 1980).

(b) the concept of a rule, including both structural and procedural aspects, which
provides the basic theoretical construct on which this work Is based (e.g., Scandura,
1970, 1973a, 1973b, 1980).

(c) the method of Structural Analysis (e.g., Scandura, Durnin & Wulfeck, 1974;
Scandura & Durnin, 1977; Scandura, 1982, 1984a, 1984b),

(d) the conceptualization and design of IMS's PRODOC programming
environment (Scandura, in 1977),

While independently derived, these conceptual formalisms share certain features with
other work In artificial intelligence and the cognitive sciences generally. The essential
equivalence of structural and procedural representations of knowledge, for example, is

32

r,-ot)

www.manaraa.com

well recognized (e.g., Anderson, 1976). Rule domains (or structure schemas) are
similar to "frames" (Minsky, 1975), "schema" theory (Ausubel, 1963; Rumelhart, 1982),
etc., although as far as can be determined the particular characteristics of rule domains,
range and procedures are original.

The structural-learning-based instructional theory parallels Pask's (1975) Conversation
Theory at a genwal systems level. The instructional theory also shares certain.
elements in common with other algorithmic formulations, such as that by Landa (1976).
It does, however, provide a more rigorous base for computer implementation.

Also, as mentioned previously, the method of structural analysis (e.g., Scandura, 1982,
1984a, 1984b) is potentially compatible with other methods of task analysis (cognitive
and otherwise) and automatic programming. Thus, task analysis (proposed by R. B.
Miller during the 1950's & Gagne in 1962) can be viewed as a more restricted case of
structural analysis where the emphasis is on task requirements rather than cognitive
processes. Work by Paul Merrill and that by Lauren Resnick (1984 on cognitive task
analysis also shares some features in common with structural analysis. What
distinguishes structural analysis is its degree of systematization and rigor, and the fact
that it makes provision for higher- as well as lower-order rules, thereby accommodating
arbitrarily complex content.

Relationship to research in artificial intelligence and the cognitive sciences

In the cognitive sciences, two ways of using computers to improve learning are
generally recognized -- using the computer: (a) as an environment for learning use of
"microworlds" and (b) as an intelligent tutor which diagnoses and/or guides student
learning (cf. Papert, 1982; Brown & Burton, 1978; Anderson, 1984; Resnick, et al,
1984; Swets, Bruce & Feurzeig, 1984). This research is concerned primarily with the
latter. Nonetheless, it should be emphasized that if one were to extract the diagnostic
and tutorial aspects of the proposed Curriculum...Tutor (leaving the "idealized" content
model and provision for the student intaraciing with it), one would effectively have a
"microworid" (cf. Breuer, 1985). More specifically, the ICBI RuleTutor is an intelligent
tutorial system that has various features in common with J. S. Brown's (e.g., Brown &
Burton, 1978) systems for identifying procedural "bugs" (i.e., rules which generate
incorrect outputs).

Some confusion exists in the literature concerning the question of diagnosis based on
the structural learning theory (e.g., Scandura, 1971, 1977) and its relationship to "error
patterns" based on the "bug" concept in programming (e.g., Brown & Burton, 1978). In
the former case, emphasis has been given to identifying which parts (subrules or
subskills) of a to-be-learned rule have and have not been mastered. In the latter case,
the emphasis is on the kinds of bugs (e.g., misconceptions) students may have -- even
bugs "which have no vestiges in the correct skill (Burton, 1982, p. 177)."

33

www.manaraa.com

In terms of structural learning theories, "bugs" correspond to what Scandura (e.g.,
1977, pp. 75-77) has called "error" rules rules which generate incorrect responses
but which nonetheless are prototypic of the way certain classes of students behave.
Such "bugs" may be characterized either as "perturbations" on some standard (e.g.,
correct rule) or as distinct rules. In the former case, the concept of a prototype "rule
procedure" must be generalized to allow nondeterminism (e.g., see Scandura, 1973a,
Ch. 8). Individual steps in the prototype may allow for more than one possible
response; deterministic procedures will be assigned to individuals (e.g., students)
based on diagnosis. This approach parallels that proposed by Brown et al (1984) and
has the apparent advantage of simplicity. However, as one of us (Scandura, 1973a,
Ch.8) has shown, resorting to nondeterminism "camouflages" the issue of rule
selection.

In the latter case recall that a given structural learning theory may involve any (finite)
number of alternative prototypes or perspectives (rules or sets of rules) (e.g., Scandura,
1977a., pp.68-76). As demonstrated by Durnin and Scandura (1973), the behavior of
an individual student will be more or less compatible with any given prototype -- in this
case, the behavior of most American fourth graders was shown to be more compatible
with borrowing in column subtraction than with equal additions. That is, they tended to
be either consistently successful or unsuccessful on problems associated with various
kinds of borrowing. This was NOT true for those students in the case of equal
additions.

To be sure, the behavior of some students was more compatible with equal additions,
just as others may be more consistent with error, or "buggy" rules. For considerations
involved in distinguishing among two or more rule prototypes to see which provides the
best account of overall performance, see Scandura (1977, Chapter 10).

Irrespective of the additional information that may be provided when a variety of
prototypic rules (including "error" or "buggy" rules) is used in knowledge assessment,
explicit verbal attention to such defects may NOT be desirable from an instructional
point of view. In particular, calling attention to incorrect skills can lead to later
confusion. According to the Structural Learning Theory (e.g., 1971, pp. 41-44; 1973a,
Chapter 8) this is because students must choose between or among the two or more
rules which may be used in the situation -- the error rule originally learned and the
correct one. This ambiguity must be resolved via higher-order selection rules and is a
frequent source of difficulty for students. In effect, it is almost always better to learn new
skills correctly the first time. The proposed !CBI RuleTutor deals with this problem by
combining testing with teaching at the lowest meaningful levels. As soon as a problem
is established, remedial instruction is provided immediately, thereby avoiding
debilitating misconceptions which otherwise would inevitably surface.

Our research is also paralleled in many ways by the recent work on intelligent tutors by
John Anderson (unpublished research proposal) and others (e.g., Larkin, 1983) at
Carnegie-Mellon. Both approaches start with a model of the learner (albeit quite

34

www.manaraa.com

different ones). In Anderson's case, the learner is modeled by his ACT theory (1976).
Originally inspired by S-R association principles, this theory currently is based on
productions (condition-action pairs). Even today, however, it retains such S-R
constructs as "strength," "spreading activation" and "probability."

In the Structural Learning Theory (SLT) the learner is characterized exclusively in
terms of lower and higher-order rules, plus universals such as processing capacity and
speed and a common control mechanism. Equally fundamental, knowledge in the SLT
is treated deterministically (e.g., Scandura, 1971, 1973a, 1977; Hilke, Kempf &
Scandura, 1977c). Rather than talking about "productions" being available with some
probability, as Anderson does, "rules" in SLT's are either in an "undetermined" state, or
available or unavailable.

In the more explicitly instructional aspects of their research, Anderson et al have
adopted the structural learning concept of idealized (or prototypic) knowledge (cf.
Scandura, 1971, 1973, 1977a,b). As in our research, prototypes are used to
characterize what is to be learned. They also have introduced modules incorporating
various teaching principles and for coordinating input and output. Each of these has
paralleis in our research.

Inference based instructional systems such as those developed by A. Collins and his
colleagues (e.g., Collins et al., 1975) also deserve mention because of their relevance
to the proposed curriculum.Tutor. Inference in structural-learning-based tutors can take
the form of higher order rules (to be learned by students) as well as "idealized"
inferencing on the part of the computer tutor.

In short, like other intelligent tutors and some CAI systems (e.g., Resnick, 1984;
Resnick & Omanson, 1985; Tennyson & Christensen, 1986; Breur, 1985), the ICBI
RuleTutor provides for the automatic generation of content. It also allows for future
extensions including provision for "bugs", alternative perspectives and logical inference
(e.g., Brown et al 1982; Lesh et a1,1986; Collins et al, 1975).

Unlike other intelligent tutors, however, there is a sharp distinction in the RuleTutor
between the diagnostic/tutorial system, on the one hand, and content (e.g., arithmetic)
on the other. The desirability of this type of modularity has never been fully achieved
but also has been recognized by others (e.g., Clancey, 1982; Brown, Burton & de Kleer,
1982, p. 280). Like our original RuleTutor, for example, GUIDON (Clancey, 1982) is a
multiple-domain tutorial program. However, in neither case is the conceptual
distinction between content and instruction fully reflected in modular code. Some,
indeed, have voiced the opinion that it may not be possible.

What makes modularity feasible and is unique about the proposed RuleTutor and
Curriculum-Tutor systems is an explicit theoretical foundation which has been
demonstrated empirically to have the desired modularity and universality (e.g.,
Scandura 1971, 1973, 1977, 1980). in combination with PRODOC (used as an

35

1.1;8

www.manaraa.com

authorizing system) this modularity will facilitate future development. In any case, it
should take considerably less than the accepted 250 hours or so to produce an hours
worth of intelligent tutoring (e.g., Anderson, 1986). Equally important, it may be feasible
for the first time for instructional designers (who are computer literate but not skilled
programmers) to develop their own intelligent tutoring systems. Only content will have
to be dealt with directly since all of the necessary diagnostic and tutorial intelligence
will already have been built in.

SUMMARY

In this report we have first describe how the Structural Learning Theory might be used
as a basis for creating intelligent tutoring systems. Among other things, we described a
new class of ICBI authoring/development systems having two distinct but
complementary parts: The first part of each such system is a general purpose,
intelligent tutor which is able to perform both diagnostic testing and instruction -but
which does not contain content specific knowledge, either of the problem/tasks to be
generated or the cognitive procedures (rules) tJ be taught. The second part consists of
IMS's PRODOC software development system. PRODOC provides an easy-to-use
medium for specifying arbitrary classes of rules characterizing the desired content
area(s). Each such rule, in turn, is interpretable by a general purpose tutor, resulting in
a fully operational intelligent tutoring system.

More specifically we have described a general-purpose ICBI Rule Tutor which can be
used in conjunction with ANY cognitive procedural task formulated as a single rule (i.e.
as defined in the Structural Learning Theory - e.g., Scandura 1970,1977,f984.
Independently, we also found that PRODOC's rule library might reasonably
accommodate essentially any content area. The atomic rules in this library have been
shown to provide a natural basis for formulating arbitrary rules (corresponding to
to-be-learned cognitive procedures) not only in arithmetic but other areas as well.

36

www.manaraa.com

REFERENCES:

Anderson, J.R. LanguaggLmgaimAolijiglabi. Hillsdale, NJ: Erlbaum
Associates, 1976.

Anderson, J.R. Proposal for the development of intelligent computer-based
tutors for the high school mathematics. (unpublished proposal)
Washington, D.C. : NSF, 1984.

Ausubel, D.P. The I ! t
Grune & Stratton, 1963.

New York:

Bork, A. Advantages of computer-based learning. Journal of
Learning, 1986, 9, No. 1, 63-76.

Breuer, K. Computer Simulations and Cognitive Development. In K. Duncan
and D. Harris (Eds.) cfsmiputemitif,juralign, Amsterdam: (North-Holland)

Brown, J.S. & Burton, R.R. Diagnostic models for procedural bugs in basic
mathematical skills. cesatjaackincee 1978, 155-192.

Brown, J.S. & Lenat, D.B. ArtifigiaIntelligence, 1984.

Brown, J.S., Burton, R.R. & de Kleer, J. Pedagogical, natural language and
knowledge engineering techniques in SOPHI I, II, and Ill. In D. Sleeman
& J.S. Brown (Eds.) hilejligmatarimaysteim New York: Academic
Press, 1982.

Burton, R.R. Diagnosing bugs. In D. Sleeman & J.S. Brown (Eds.), Intelligent
lagdnaalgung. New York: Academic Press, 1982.

Carbonell, J.R. Learning by analogy: formulating and generalizing plans
from past experience. In R.S. Michalski, J.R. Carbonell & T.M. Mitchell
(Eds.) magbinajornincLoAlificialproacti Palo Alto:
Tioga Press, 1983.

Carpenter, T.P. Conceptual knowledge as a foundation for procedural
knowledge: Implications from research on the initial learning of
arithmetic. In J. Heibert (Ed.) calopliajlatfroseefiallnowleilgei The
cuestMilthgffisika. Hillsdale, N.J.: Lawrence Elbraum Associates, 1986.

Clancey, W.J. Tutoring rules for guiding a case method dialogue. In
D.Sleeman & J.S. Brown (Eds.) Intejliggiiliannaystwns. New York:
Academic Press, 1982.

37

CO

www.manaraa.com

Collins, A., et al. Reasoning from incomplete knowledge. In D.G. Bobrow &
A. Collins (Eds.) Representation arcLUncterstanding: Studies ill Cognitive
Science,. New York: Academic Pret:s, Inc. 1975, 383-414.

Dale, N. & Lilly, S.C. EagrairAte231Algorithms and Advanced
programmita, Lexington, MA: D.C. Heath, 1985.

Davis, R. B. Conceptual and procedural knowledge in mathematics: A
summary analysis. In J. Heibert (Ed.) Conceptual and Procedural
Enudedge.; The Case of Mathematics. Hillsdale, N.J. : Lawrence
Elbraum Associates, 1986.

Davis, R. & Lenat, D.B. ,Knowledge-based Systems in Artificial Intelligence.
New York: McGraw-Hill International Book Company, 1982.

Dienes, Z.P. jauklaglatatemajo'. London: Hutchinson, 1960.

Durnin, J.H., & J.M. Scandura, An algorithmic approach to assessing
behavior potential: Comparison with item forms and hierarchical
analysis. Journal of EducatignaLesychology, 1973, 65, 262-273.

Gagne, R.M. The acquisition ofknowledge. Psychological fisitm 1962, 69,
355-365.

Hiebert, J. (Ed.) Conceptual ndirorgiciaraLKLQwleds' EirauDi
Mathematics. Hillsdale, N.J. Lawrence Elbraum Associates, 1986.

Hilke, R., Kempf, W. F., & Scandura, J. M. Deterministic and probabilistic
theorizing in structural learning. In H. Spada & W. F. Kemp (Eds.),
Structural lto edILapaditurasurnia. Bern: Huber, 1977.

Hoare, C.A.R. & Shepherdson, J.C. (Eds.) Mathematical Logic and
Ergarammjnglahauswel. Englewood Cliffs, NJ: Prentice-Hall
International, 1985.

Kiaras, D.E. & Poison, P.G. An approach to the formal analysis of user
complexity. Project on User Complexity of Devices and Systems.
Working Paper No. 2. Oct. 1, 1982.

Kinnucan, P. Computers that think like experts. New York: lliabiegetiology,
1984, Jan. 30-42.

Kleiman, G. & Humphrey, K. Writing your own software: authoring tools
make it easy. Electronic Learning, 1982, Vol. 1(5), 37-44.

38

C

www.manaraa.com

Knuth, D.E. 11i = I t
AlgQrit.bma, Reading, Mass.: Addison-Wesley, 1968.

Landa, L.N. ftgratmizaligajnjearnImakkaingan. Englewood Cliffs,
NJ: Educational Technology, 1976.

Larkin, J,H. The role of problem representation in physics. In D. Genter and
A.L. Stevens (Eds.) Mental models. Hillsdale, N.J. Lawrence Elbraum
Associates, 1983.

Lenat, D.B. The role of heuristics in learning by discovery: three case
studies. In R.S. Michalski, J.R. Carbonell & T.M. Mitchell (Eds.) Machine
LaarningasnAlificiallatagencelpproch. Palo Alto: Tioga Press,
1983.

Lesh, R. Paper presentation of Fairwether, P., Lesh, R. and 0' Neal, A.F. What
do instructional authoring systems need for automated reasoning ?
American Educational Rwearch Association, San Francisco, April 1986.

Martin, J.
gLirug_agliwarialgineertg Englewood Cliffs, NJ: Prentice-Hall,
1985.

= = t r h B n I

Martin, J. and McClure , C. DisigrammingIeseitniqugaisgAnstygasind
Programmers. Englewood Cliffs, N.J.: Prentice Hall International,
1985.

Michalski, R.S., Carbonell, J.R. & Mitchell, T.M. (Eds.) Machine Learning, an
AthficistiniejligtllEgApprogh. Palo Alto: Tioga Press, 1983.

Minsky, M. A framework for representing knowledge. In P.H. Winston (Ed.)
DILELYCItdagysiQDMIaliel.Slaim, New York: McGraw-Hill, 1975.

Papert, S.
Books, 1980.

I! II I I. = .111 N.Y.: Casic

Pask, G. Conversation. t. Amsterdam: Elsevier, 1975.

Quinlan, J.R. Learning efficiency, classification procedures and
applications to chess and games. In R.S. Michalski, J.R. Carbonell &
T.M. Mitchell (Eds.) Machinelearninci,j2aAticejailaLegicam.
Approach, Palo Alto: Tioga Press, 1983.

39

C2

www.manaraa.com

Reif, F. and Schoenfeld, A.H. Principled teaching of scientific and
mathematical concepts. (unpublished proposal) Washington D.C. : NSF,
1980.

Resnick. L.B. Beyond error analysis: the role of understanding in elementary
school arithmetic. In H.N. Cheek (Ed.) niagnolicAuLigasaiPliVD.
mathematics: issues. Ideas and insights. Kent, Ohio: Research Council
for Diagnostic and Prescriptive Mathematics (Research Monograph),
1984.

Resnick, L.B. Intelligent tutors for elementary and middle school
mathematics: A proposal to develop instructional materials based on
cognitive research. (unpublished proposal) Washington, D.C. : NSF, 1984.

Resnick, L.B. and Omanson, S. Learning to understand arithmetic. In R.
Glaser (Ed.) fdvances in Instructional Psychology. Hillsdale, N.J.
Lawrence Elbraum Associates, 1985.

Rumeihart, D.E. Schemata: The building blocks of cognition. In R. Spiro &W.
Brewer. (Eds.) I: i 'a : -.0 le sus :11=1 01 Englewood
Cliffs, N.J.: Erlbaum, 1982.

Scandura, J.M. The role of rules in behavior: Toward an operational
definition of what (rule) is learned.. Embs2lagiresillaiviatt, 1970, 77,
516-533.

Scandura, J.M. Deterministic theorizing: Three levels of empiricism.
Journal of Structural_ Learning, 1971,3, 21-53.

Scandura, J.M.
Breach Sci. Pub., 1973a.

1: ;: London: Gordon &

Scandura, J.M. On higher-order rules. Ectugalisanaaughgagaiat, 1973b, 10,
159-160.

Scandura, J.M. The role of higher-order rules in problem solving.
Experimental Psychology, 1974, 120, 984-991.

Scandura, J.M. (with the collaboration of others). ergb*:15QiyinciLA
'It I S

York: Academic Press, 1977.
New

Scandura, J.M. Structural approach to instructional problems.. Amaral
Eacigiggig, 1977, 32, 33-53.(b)

40

C3

www.manaraa.com

Scandura, J.M. A deterministic approach to research in instructional
science. Egivollimalaughcaufal, 1977, 12, 118-127.(c)

Scandura, J.M. Theoretical foundations of instruction: A systems
alternative to cognitive psychology. Journal of
1980, 6, 347-394.

Scandura, J.M. Problem solving in schools and beyond: Transitions from the
naive to the neophyte to the master. Educational 1981a,
16,139-150.

Scandura, J.M. Microcomputer-based system for authoring, diagnosis and
instruction in algorithmic content. Esseatimaljegliigiggy, 1981b,
13-19.

Scandura, J.M. Structural (cognitive task) analysis: A method for analyzing
content; Part 1: Background and empirical research. Journal of
Structural Learning, 1982, 7,101 -114.

Scandura, J.M. Structural (cognitive task) analysis: A method for analyzing
content; Part 11: Toward precision, objectivity and systematization.
Journal of .$tructural Learniaa, 1984a, 8, 1-28.

Scandura, J.M. Structural (cognitive task) analysis: A method for analyzing
content; Part Ill: Validity and reliability. kunagaLatglitual
taaniag,1984b, 8, 173-193.

Scandura, J.M. Theory-driven expert systems. Educational
leribngigz, 1984c, 24 (11) 47-48.

Scandura, J.M. System issues in problem solving research. Journal of
Structural Learning.. 1985, 9, 49-62.

Scandura, J.M. A cognitive approach to software development: the PRODOC
system and associated methodology. laurriglgl1200LAjsund Modula
2. 1987, in press.

Scandura, J.M. & Brainerd, C.J. (Eds.) Struct9f Complex
HumanBehavia. Alphen ann den Ryn, The Netherlands: Sijthoff &
Noordhoff, 1978.

Scandura, J.M. & J.H. Durnin. Algorithmic analysis of algebraic proofs.
J.M. Scandura,
jawaimaumakaima. New York: Academic Press, 1977.

- 1 1

41

C4

www.manaraa.com

Scandura, J.M., Durnin, J.H. et al. Anatsaithathamstkal
Cargeiglighayigrataundstim. New York: Harper & Row, 1971.

Scandura, J.M., Durnin, J.H. & Wulfeck, W.H. II. Higher-order rule
characterization of heuristics for compass and straight-edge
construction in geometry. Arlificiallaagence, 1974, 5, 149-183.

Scandura, J.M. & Durnin, J.H. Algorithmic analysis of algebraic proofs. In
J.M. Scandura, Problem Solving: a structural process approach with
Thstructional implications. New York: Academic Press, 1977.

Scandura, J.M. & Scandura, A.B. Structural Learning and Concrete
Dimati l As* °act %-o: C ati 1. New York: Praeger
Sci, Pub., 1980.

Scandura, J.M., Stone, D.C. & Scandura, A.B. The "RuleTutor": an intelligent
CBI system for diagnostic testing and instruction. Journal gt
Structural_Learning, 1986, in press.

Swets, J.A., Bruce, B. and Feurzeig, W. Cognition, computers and curricula:
Software tools for curriculum design , (unpublished proposal)
Washington, D.C. NSF, 1984.

Tennyson, R.D. and D.L. Christensen, Artificial intelligence in
computer-based instruction. Paper presented at American Educational
Research Association, San Francisco, April 1986.

Thorndyke, P.W. & Wescourt, K.T. Representation and diagnosis of skills for
training time-stressed planning. Paper presented at American
Educational Research Association, New Orleans, April, 1984.

VanLehn, K. Arithmetic procedures are induced from examples. In J. Hiebert
(Ed.) CorgialuaLandEwsacturaLKasailessilar_Mathematiga.
Hillsdale, N.J. : Lawrence Elbraum Associates, 1986.

Wulfeck, W.H. An Alsorithmic_4242=014 riculum bevel me
al..'lle Ile :11:1 II 411, I 18

Instructional Content Sequences.. Doctoral Dissertation, Philadelphia,
PA: University of Pennsylvania, 1975.

Wulfeck, W.H. & Scandura, J.M. Theory of adaptive instruction with
application to sequencing in teaching problem solving. In J.M. Scandura
et al, :11 i
Ingairdignst jifialicat1202. New York: Academic Press, 1977.

g

4

42

C5

1P I I

www.manaraa.com

APPENDIX

FLOWform for simulating addition. 01-31-89

display_structure (givens)

current_column = ONES

WHILE next_column_exists

DO current_addend = next_component (ADDENDS)

REPEAT IF not (same (next_digit, nill))

`.0
THEN Icurrent_number := add (current_number, next_digit)

last added addend = current_addend

current_addend = next_component (ADDENDS, current_addend)

UNTIL not (next_addend_exists)

current_column = next_component (COLUMNS, current_column)

IF greater than_or_equal (current_number, '10')

THEN

ELSE

sum_digit := modulo (current_number, '10')

display (sum digit, ' t16, mVresult_col,c6,a1'

carry := divide (current_number, '10')

carry := round (subtract (carry, '0.5'), '0')

IF next_column_exists

THEN display (carry, ' tVcarry_row,mVcarry_col')

sum_digit := current_number

display (sum_digit, ' t16, mVresult_col,c6,al')

carry := '0'

carry_col := subtract (carry_col, '3')

result_col 1= subtract (result_col, '3')

current_number := carry

current_addend = next_component (ADDENDS)

REPEAT IF not (same (next_digit, nil].))

THEN [current number := add (current number, next digit)

last_added_addend = current_addend

current_addend = next_component (ADDENDS, current_addend)

UNTIL not (next_addend_exists)

current_column = next_component (COLUMNS, current_column)

IF greater than_or_equal (current_number, '10')

THEN sum digit := modulo (current_number, '10')

display (sum_digit, ' t16, mVreoult_co1,c6,a1')

carry := divide (current_number, '10')

carry := round (subtract (carry. '0.5'). '0')

www.manaraa.com

ELSE

THEN display (carry, ' tVcarry_row,mVcarry_col')

sum_digit := current_number

display (sum_digit, ' t16, mVresalt_col,c6,a11)

carry := '0'

carry_col := subtract (carry_col, '3')

result_col := subtract (result_col, '3')

current_number := carry

IF unequal (carry, '0')

THEN sum_digit := carry

display (sum_digit,' t16, mVresult_col,c6,a1')

[DOMAIN]:

[ADDENDS]: c3

[ADDEND13: t10

1CINTEGER_ELEMENT): :8

IfINTEGER_ELEMENT): :7

(CINTEGER_ELEMENT): :6

CINTEGER_ELEMENT): :5

[ADDEND2]: til

[CINTEGEILELEMENT): :5

CINTEGER_ELEMENT): :6

1CINTEGER_ELEMENT): :7

(INTEGER _ELEMENT):

CADDEND33: t12

FEINTEGER...ELEMENT) : :3

CINTEGER_ELEMENT): :2

EADDEND43: t13

CINTEGER_ELEMENT): :9

EADDEND53: t14

CINTEGER_ELEMENT): :2

CINTEGER_ELEMENT):

ICINTEGER_ELEMENT): :9

7_

www.manaraa.com

LA4VJAMBOJ:

CONES]: m40

IpNTEGER_ELEMENT):

(INTEGER ELEMENT):
01.11.111

CINTEGER_ELEMENT): :3

CINTEGER ELEMENT): :9

(INTEGER_ELE1ENT): :2

ICINTEGER_ELEMENT): :0

(TENS]: m37

CINTEGER_ELEMENT): :7

EINTEGER_ELEMENT): :6

(INTEGER_ELEMENT): :2

CINTEGER_ELEMENT): :0

CINTEGER_ELEMENT): :0

(HUNDREDS]: m34--

1CINTEGER_ELEMENT):

rtiiiiiGER_ELEMENT): :7 --1
CINTEGER_ELEMENT): :9

riINTEGER ELEMENT): :0

(THOUSANDS]: m31

CINTEGER_ELEMENT):

(INTEGER_ELEMENT):

CINTEGER_ELEMENT3: :0

CTEN_THOUSAND3: m28

CINTEGER_ELEMENT):

COPERATION_DESIGNATORS3: c4

Eplus_sirn]: t14,m25:+

(underline]: t15,m24:

www.manaraa.com

CINTEGER_ELEMENT): :0

CINTEGER_ELEMENT3: :0

[PNTEGER_ELEMENT): :0

ETINTEGER_ELEMENT3:

CINTEGERELEMENT): :0

Untermediate]:

Enext_addend_existsliext_component_exists (ADDENDS, last_added_addend):

Enext_column_exists:Inext_component_exists (COLUMNS, current column):

tearry_row3CCHAR_ELEMENT):

[CEarry_col]cCHAR ELEMENT):'37'

ammommiaginwryonmaartatammy......401.

(result colUCHAR ELEMENT):'40'

Ecurrent_addendHCHARELEMENT):

(carry3(CHAR_ELEMENT):

Ecurrent number3CCHAR_ELEMENT):

12EIntradded_addend3(CHAR_ELEMENT):

rEnext_digit3common_component (current_addend, current column):

Csum_digit3 common_component (SUM, current_column): c12

INTEGER.) EMENT): :8

/NTEGER_ELEMENT):

INTEGER_ELEMENT):

INTEGER_ELEMENT):

INTEGER

INTEGER

INTEGER

INTEGER

_ELEMENT): :5

ELEMENT) :76

_ELEMENT): 27

ELEMENT):

www.manaraa.com

_ELEMENT): :9

NTEGER

IL

_ELEMENT):

NTEGER ELEMENT):

:0

Int

INTEGER

INTEGER

ELEMENT): :0

_ELEMENT): :0

INTEGER_ELEMENT): :0

, INTEGER

L
INTEGER_

141111114 /2114011.0.001.404

ELEMENT):

ELEMENT): :0

:

7 0

www.manaraa.com

FLQWform for simulating subtraction.

01-31-89

pliTRACT.NVIAlsubtract_numbers_by_columns;OLIBRARY;Cprocedure];

display_structure (givens)

current_column = ones

WHILE next_column_exists

DO IF greater_than_or_equal (top_digit, bottom_digit)

I.

THEN difference_digit := subtract (top_digit, bottom_digit)

display (difference_digit)
1

E,SE borrow digit = top_digit

borrow_digit = next_component (MINUEND, borrow_digit)

WHILE equal (borrow digit, '0')

DO borrow_digit = next_component (MINUEND, borrow_digit)

REPEAT borrow_digit := subtract (borrow_digit,

H3g2; fbcargrS714t°1109?
borrow_digit = previous_component (MINUEND,

borrow_digit)

borrow_digit := add (borrow_digit, '10')

STMW(EMVEgir, column}}

borrow_row := subtract (borrow_row,

UNTIL same (borrow_digit, top_digit)

difference_digit := subtract (top_digit, bottom_digit)

display (difference_digit)

current_column = next_component (COLUMNS, current_column)

difference_digit := subtract (top_digit, boLtom_digit)

display (difference_diglt)

(DOMAIN]:

(MINUEND]: t10,c3

1CINTEGER_ELEMENT): :1

ELETE117ELEMENT): :2

riEGER_EL64EN1): :0

NTEGER ELEMENT31 :4

LibiiiiiiiNDit t11,c3

TIEGER_ELEMENT): :4

[INTEGER_ELEMENT): :3

www.manaraa.com

1....

ICINTEGER_ELEMENTI:

*.101141
(COLUMNS]:

CONES): m40

nOI.=s.

RffifiGER_ELEMENT3: :1

CINTEGER_ELEMENT): :4

(INTEGER_ELEMENT3: :0

1.11........11.01.11.0.1..001111....11....MIII

(TENS]: m37

CINTEGER_FLEMENT3: :2

CINTEGER_ELEMENT): :3

C 111ETEGER_ELEMENT3: :0

(HUNDREDS]: m34

CINTEGER_ELEMENT3: :0

CINTEGER_ELEMENT): :3

LEFEGER_ELEMENT3: :0

W.M......11

(THOUSANDS]: m31

[C INTEGER_ELEMENT): :4

ICINTEGER_ELEMENT]: :1

ICINTEGER_ELEMENT3:

EOPERATION_DESIGNATORS]:

[EmIpus_sign]: t11,m28:-

[FEidelre:111!22 t12,m27:

(RANGE]:

(DIFFERENCE]: t13,al,c6

LTEpER_ELEMENT): :0

ENTEGER_ELEMENT): :0

kINTEGER_ELEMENT]: 10

[c INTEGER :0

tiFtitTrmedift.te3 3

www.manaraa.com

Eborrow_rou/CCHAR_ELEMENT3:-1

[Eborrow_digiti:

inext_column_existsklext_component_exists (COLUMNS, current_column):

ICEurrent_columOCCHAR_ELEMENT):

Etc)p..giti=co2lmon_cornponent (MINUEND, current_column):

Ebottom_digit3=common_component (SUBTRAHEND, current_column):

Edifference_digit3=common_component (DIFFERENCE, current:_column):

INTEGER_ELEMENT): :1

IETEGER_ELEMENT):

OTEGER_ELEMENT)

:4

',INTEGER_ELEMENT):

L_
INTEGER_ELEMENT):

INTEGER ELEMENT):

INTEGER_ELEMENT):

INTEGER_ELEMENT):
11111111.1.

INTEGER ELEMENT):

INTEGER _ELEMENT}: :0

ELEMENT): :0

www.manaraa.com

FLOWform for simulating multiplication.

01-31-89

TIULTIPLMmultiply_numbers_by_columns;OLIBRARY;Cproceduto3;

display structure (MULTIPLICAND)

display_structure (MULTIPLIER)

display (time_sign)

display (problem_underline)

currant_partial_product = PARTIAL_PRODUCT1

bottom_digit = next_component MULTIPLIER)

REPEAT carry := '0'

partial_product_digit = next_component (curront_partial_produc

top_digit = next_component (MULTIPLICAND)

REPEAT partial product digit := multiply (top_digit,
bottom_digit)

partial_product_digit := add (partial_product_digit,
carry)

carry := divide (partial_product_digit, '10')

carry := round (subtract (carry, '0.5'), '0')

partial_product digit := subtract
IpartiaiLproduct_digit, multiply (carry, '10'))

display (partial_product_digit)

partial product digit = next component
icurrent_partiai_product, pairtial_product_digit)

last_top_digit = top_digit

top_digit = next_component (MULTIPLICAND, Lop digit)

UNTIL NOT (next_component_exists (MULTIPLICAND, last_top_digit))

IF greater_than (carry, '0')

THEN partial_product_digit :,- carry

display (partial_product_digit)

current_partial product . next_component (PARTIAL PRODUCTS,
current_partial7product)

last_bottom_digit = bottom_digit

bottom_digit = next_component (MULTIPLIER, bottom_digit)

UNTIL not (next_component_exists (MULTIPLIER, last_bottom_diglt))

display (partial_product_underline)

curren't;_partial_product = PARTIAL_PRODUCT1

product_result := '0'

factor2 s= '1'

REPEAT fft;It.gilirprcalttlyztadligtiutrrxt_component,

factorl := '1'

current_partial_prcduct := '0'

REPEAT I iv!rti41,prodyct..digit:.:-..mu)tiOy

www.manaraa.com

current_partia] product := add
(current_partiaT_product, partial_product_digit)

factorl := multiply (factorl, '10')

last_partial_product_digit = partial_product_digit

partialproduct digit = next component
lcurrentZpartiaT_ptoduct, paYtial_product_digit)

UNTIL not (next component exists (current_partial_product,
last_partTal_producr_digit))

current partial_product := multiply (current_partial_product,
factor2T

factorl := multiply (factorl, '10')

product result := add (product_result,
current:partial_productl

last_partial_product = current_partial_product

current partial_product = next_component (PARTIAL PRODUCTS,
current_partial_product)

UNTIL not (next component exists (PARTIAL PRODUCTS,
last_partTal producr))

product_digit = next_component (PRODUCT)

WHILE greater_than (product_result, '0')

DO product_value := product_result
14

product_result := divide (product_result, '10')

product_result := round (subtract (product_result, '0.5'), '0')

product_digit := subtract (product_value, multiply (product_result,
10'))

display (product_digit)

product_digit = next_component (PRODUCT, product_digit)

(DOMAIN]:

[[MULTIPLICAND]: t9,c3

RINTEGER_ELEMENT): :9

CINTEGER_ELEMENT):

(L!,21!22.1fJEMENT): :3

(MULTIPLIER]: t10,c3

CINTEGERELEMENT):

RiNTEGER_ELEMENT): :7

[CINTEGER_ELEMENT): :8

(COLUMNS]:

(ONES]: m40

iiINTEGER_ELEMENT): :9

1CINTEGER_ELEMENT): :9

FINTECER_ELEMENT): :0

www.manaraa.com

(TENS]: m37

EINTEGER_ELEMENT): :2

CINTEGER_ELEMENT3: :7

EINTEGER_ELEMENT3: :

EINTEGER_ELEMENT):

CINTEGER_ELEMENT): :0

(HUNDREDS]: m34

IC INTEGER_ELEMENT): :3

CINTEGER_ELEMENT): :8

reiNTEGER_ELEMENT3: :0

CINTEGER_ELEMENT): :0

FINTEGERELEMENT) : :0

EINTEGERELEMENT):

[THOUSANDS]: m31

EINTEGER_ELEMENT3: :0

CINTEGER_ELEMENT3: :0

IC INTEGER_ELEMENT): :0

[CINTEGER_ELEMENT3: :0

CTEN_THOUSAND3: m28

(CINTEOER_ELEMENT):

ICINTEGER_ELEMENT): :0

[(INTEGER_ELEMENT3: :0

CHUNDRED_THOUSAND]: m25

ICINTE1ER_ELENENT): :0

PREGERELEMENT): :0

(OPERATION_DESIGNATORS]: c4

Etime_s1gn3:_t10,m28:A

Enoblemunderline3: Myrna:
* ANArikauwartsormAn.A.A.A. A

frroaritiA1 rtrntitirE tirvir4r1
76

www.manaraa.com

(RANGE]:

(PARTIAL PRODUCTS]:

EPARTIAL_PRODUCT13: t12

1(INTEGER_ELEMENT): :0

{INTEGER ELEMENT): :0

[CINTEGER_ELEMENT): :0

FINTEGER_ELEMENT): :0

PNTEGER_ELEMENT) : 0

[PARTIAL_PRODUCT2]: t13

CINTEGER_ELEMENT }: :0

[C INTEGER_ELEMENT): :0

CINTEGER_ELEMENT):

ICINTEGER_ELEMENT): :0

[CINTEGER_ELEMENT}: :0

[PARTIAL PRODUCTS]: t14

(=EGER...ELEMENT) : : 0

CINTEGER_ELEMENT): :0

CINTEGER_ELEMENT): :0

LINTEGER_ELEMENT): :0

(PRODUCT]: t16,al

[CINTEGER_ELEMENT):

r(INTEGER_ELEMENT): :0

CINTEGER_ELEMENTJ: :0

ICINTEGM_ELEMENT): :0

1CINTEGER_ELEMENT): :0

FINTEGER_ELEMENT): :0

(intermediate]:

[current column]:

www.manaraa.com

FElast_bottom_digit]:

Ctop_digit3:

FEbottom_digit3:

Eproduct_digit3: c6

Cpartial_product_digit3:

E;15:
ICcurrent_partial_product3:

[Inext_digit3:

(current number]:

[product result]:

LITIE1:21111_

[Efactorn:

[Elast_partial_product3:

Irproduct_value]:

Past_partial_product_digit]:

(GLOBAL]:

Eni113:

Edisplay_otructurel:EINCLUDED FILE]
........1.1111

INTEGER_ELEMENT): :1

INTEGER ELEMENT):

INTEGER_ELEMENT):

INTEGER_ELEMENT):

INTEGER ELEMENT): :7

INTEGER_ELEMENT): :8

INTEGER_ELEMENT): :0

www.manaraa.com

[......___ER_ELI'TEEMENT3: :0

INTEGER_ELEMENT): :0

INTEGER_ELEMENT):

(INTEGER_ELEMENT): :0

(INTEGER_ELEMENT): :0

INTEGER_ELEMENT):

INTEGER_ELEMENT): :0

[INTEGER_ELEMErT): :0

INTEGER_ELEMENT): :0

EINTEGER_ELEMENT3: :0

EINTEGER_ELEMENT):

-INTEGER ELEMENT?: :0

[INTEGER_ELEMENT):

INTEGER_ELEMENT):

79

TI

www.manaraa.com

FLQWform for simulating division.

CDIVISION]:division;Olibrary;Cprocedure];

display_structure (GIVENS)

TRIAL DIVISOR = TEN

display(TRIAL_DIVISOR)

RUNNER = ONE

TRIAL_QUOTIENT_POSITION = THOUSANDS

CURRENT DIVIDEND := common_component(TRIAL_QUOTIENT_POSITION,DIVIDEND)
TRIAL_DIVIDEND := common_component(TRIAL_QUOTIENT_POSITION,DIVIDEND)

display(common_component(TRIAL_QUOTIENT_POSITION,DIVIDEND),' al:')

IF greater_than(TRIAL_DIVISOR,TRIAL DIVIDEND)

THEN TRIAL_DIVIDEND := add(multiply('10',TRIAL DIVIDEND),
common component(previous component(COLUMNS,

TRIALQUOTIENTpOSITION),
DIVIDEND))

display(common component(previous component(COLUMNS,
TRIAL_QUOTIENT_POSITION),DIVIDEND),' al:')

WHILE next component exists(DIVISOR,RUNNER)
C No:more_digas 3

DO TRIAL QUOTIENT POSITION =

previUus_comporient(COLUMNS,TRIAL_QUOTIENT_POSITION)

RUNNER = next_component(DIVISOR, RUNNER)

COL := add(COL,'1')

CURRENT DIVIDEND := add (multisly(CURRENT DIVIDEND,.'10') r
CoMmon_component(DIVIDEND,TRIAL_QUOTIENT_POSITION))

IF less_than(CURRENT_DIVIDEND,DIVISOR)

THEN TRIAL QUOTIENT POSITION =
previ3us_compoRent(COLUMNS,TRIAL_QUOTIENT_POSITION)

COL := add(COL,'1')

CURRENT DIVIDEND := add(multip1VCURRENT DIVIDEND '10')
Cdmmon_component(TRIAL_QUOJ.IENT POSTTION,DIVIDEND))

REPEAT CURRENT_QUOTIENT = common component(TRIALQUOTIENT)_QUOTIENT_POSITION,

REPEAT IF greater_than(CURRENT_QUOTIENT,'0')

TI-EN -Aplay(CURRENT_QUOTIENT,' b0,c7,t-1:'

CURRENT_QUOTIENT :=
subtract(CURRENT_c_JTIENT,'1')

display(CURRENT_QUOTIENT,' b0,c6,a1:'

ELSE CURRENT QUOTIENT := greatest integer(
divide(TRIAL_DIVIDEND,TRIAL_DIVISU))

dis-rla-(CURRENT_QUOTIENT,' b0,c6,a1:')

1PRODUCT := multiply(DIVISOR,CURRENT_QUOTIENT)

IF greater_than(PRODUCT,'9')

www.manaraa.com

dfsplay(PRODUCT,' b0,c7,tvROW,mvCOL:

COL := add(COL,'2')

ELSE
I

JCOL := subtrart(COL,'1')

dlsplay(PRODUCT,' b0,c7,tvROW,mvCOL:

COL := add(COL,'1')

ELSE Idisplay(PRODUCT,' b0,c7,tvROW,mvCOL:')

UNTIL clrngrithaimisupugCtgolElgyriDEND ,PRODUCT)

DIFFERENCE := subtract(CURRENT_DIVIDEND,PRODUCT)

ROW := add(ROW,'1')

COL := subtract(COL,'2')

display(' dt,tvROW,mvCOL:---')

COL add(COL,'2')

ROW := add(ROW,'1')

IF greater_than(DIFFERENCE,191)

THEN IF greater_than(DIFFERENCE,'99')

THEN I IöL := subtract(COL,'2')

display(DIFFERENCE,' b0,c7,tvROW,mvCOL:')

COL := add(COL,'2')

ELSE

L

COL := subtract(COL,'1')

display(DIFFERENCE,' b0,c7,tvROW,mvCOL:')

COL := add(COL,111)

ELSE display(DIFFEPENCE,' b0,c7,tvROW,mvCOL:1)

CURRENT DIVIDEND := DIFFERENCE

IF not (same (TRIAL_QUOTIENT_POSITION,ONES))

THEN TRIAL QUOTIENT POSITION --.

prevOus_compoffent(COLUMNS,TRIAL_QUOTIENT_POSITION)

COL := add(COL,'1')

CtiRREN7'liiiiii&ib:,72:-.--..(i(iT---
multiplY(CURRENT_uiVIDEND, '10') ,

common_component(TRIAL_QUOTIENT_POSITION,DIVIDEND))

IF gurlater_than(CURRENT_DIVIDEND,'9')

THEN IF greatcr_than(CURRENT_DIVIDEND,'99')

THEN COL := subtract(COL,'2')

disp4y(CURRENT DIVIDEND,' b0,c7,tvROW,m
vCOL:

COL T= add(COL,'2')

ELSE COL := subtract(COL,'11)

display(CUPRENT_DIVIDEND,' 1.)0,0,LvROW,m
vCOL:')

www.manaraa.com

ELSE display(CURRENT_DIVIDEND,' b0,c7,tvROW,mvCOL:')

WHILE and (not (same (TRIAL QUOTIENT POSITION ONES)),
greater than(D1VTSOR,CURRENT DIVIDEND))

DO CURRENT QUOTIENT
common_component(i1RIAL_QUOTIENT POSITION,

QUOTTENT)

display(CURRENT_QUOTIENT,' c6,a1:')

IF not (same (TRIAL_QUOTIENT POSTTION,ONES))

THEN TRIAL,_QUOTIENT_POSITION
rovioUs_comonent(COLUMNS,TRIAL_QUOTIENT_POSITI

COL := add(COL,'1')

CURRENT DIVIDEND add(
multiplY(CURRENT_DIVIDEND,'10'),

common component(TRIAL_QUOTIENT_POSITION,DIVIDEN
D))

IF greater_than(CURRENT_DIVIDEND,'9')

THEN IF greater_than(CURRENT_DIVIDEND,'99')

THEN

ELSE

COL := subtract(COL,'2')

dis Plav(CURI3ENT_DIVIDEND,' b0,c7,t
ROW,mVCOL:)

COL := add(COL,'2')

COL :,- subtracL(COL,'3')

display(CURRENT DIVIDEND,' b0,c7,t,
vROW,mvCOL:')_ _

COL := add(COL,'1')

ELSE risp1ay(CURRENT DIVIDEND,' b0,c7,LvROW,mvC
OL:)

COL := add(COL,'1')

TRIAL_DIVIDEND := '0'

TRIAL_DIVIDEND := extract(CURRENT_DliiDiND,'1'7'1;)

IF greater_than(CURRENT_DIVIDEND,'9')

THEN IF greater_than(CURRENT_DIVIDEND,'99')

THEN COL := subtract(COL,121)

display(TRIAL_DIVIDEND,' b0,c7,al,tvROWemvCOL:

COL add(COL,'2')

ELSE COL := oubtract(COL,'1')

lfsplay(TRIAL_DIVIDEND,' b0,0010tvROW,mvCOL:

COL := add(CO-L,71;)

ELSE Idisplay(TRIAL_DIVIDEND,' b0,al,c7,tvROW,mvCOL:1)

www.manaraa.com

ipsert(TEMP,TRIAL_DIVIDENL,'2')

I;z UXUE-dCL%LUIIIICAIT_WALLULalir'Z',"1./

IF greater_than(OIRRENT_DIVIDEND,'9')

THEN IF greater_than(CURRENT_DIVIDEND,'99')

THEN COL ubtract(COL,'2')

W,mvCOL:)

display(TPIAL DIVIDEND,' b0,a10(77,tvk0

COL := add(COL,121)

I= s

ELSE 1.90L := 5ubtract(COL,'I')

display(TRIAL DIVIDEND,' b0,al,c7/tvRO
NowCOL:')

COL := add(COL,I1')

- - - -
ELSE disp1ay(T2TAL_)IVIDEND, b0,a1,0,tvRON,mvCOL:

1."

add(ROW,'11)

UNTIL greater than(DIVInR,CURRENT DIVIDEND)
divisor_iLgreater_thun_currmff_dividend

display(CURRENT_QUOTIENT,' b0,al,cb:1)

REMAINDER := DIFFERENCE

display(' t3,m36,c4:RI)

display(REMAINDER,' m3H,c6,a1C)

(DOMAIN]:

rEf c3,t5:3Bq5

L:5

r

i:9

[le

Ho.

I

.. 1.4

1

wed. ow..

(DIVISOR]: t5,c3:53

(ONE] :m26:3

[TEN]: n25:5
VAVIOAVoirdkvOM

IEOPERATIONDESIGNATORS]: c4

EDI.V1SION_DAR3: t4,m28:

TITIV_CURLY]: t5,m26:)

(COLUMNS] :

ONES]: m33:
lo* Avowddr

www.manaraa.com

44,o,rVo441,."..444,4"ownrPle.rov Of 404 4 to.,....... ,n, Y., V ,..... 04 y ... I. 44hY....fa 4 - ...I. 1" , o
ETENS1 : m32. 004...,*

.444

. U." t u44.... moo or.o........ we, ",..........." "woo. ea -ro,',"*". ,-
. */1 f no*

EHUNDREDS 7.1 r io3 2. :

wry .4*eoo.. ANA

,. yt f+,404. , .4 NM/IV.. 0.1.4.....................,.......-r.,...............1 oy". ", "", Y.- ...ft...-. y-- . or...4"Y,

4044,1441. OMMO Ve0004....11. W*

orro....

ETHOUSANDS3: m30:

[T,..... f

*
1

c0:0

I.
CRANGE3; t3:

EqUOTIENT3:

17;00

1: 010

12 c010

L: c0:0

..s-

0.,

r
LEREb INDER 3 :,1

.4.0r 411.4

111,Aternediato3:

CTRIAL_DIVISOR.1: cl,al:

(:CURRENT DIVIDEND(:

LEFRIAL_DIVIDEND1

FE9IFFERENCE3:
04.* 1. ir .- a.

tRIALAUOTIENT POSITION]:

(':RUNNER]:

[a o ao41.Kfto*1
ETEMP3:

WOmikabi

221A1J%6
..1100.1..1A.MOK 11.4, il ..

EE07t:.... 0
4,A ".".

CM(4

www.manaraa.com

,114140..........4,100.40444.WeveMonVOM* Wye.. w

Mil.V........evems............sw,...........,..o.o.w..,............... 4

0.0.41,Nr4 a It %ft.* Um. ...A

